Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi M,N lần lượt là giao điểm của AD với BC và BE với AC
Các \(\hept{\begin{cases}\widehat{ANB}\\\widehat{AMB}\end{cases}}\)là 2 góc có đỉnh nằm bên trong đường tròn nên ta có:
\(\widehat{ANB}=\frac{1}{2}\)(sđ \(\widebat{EC}\)+ sđ \(\widebat{AB}\)) =90o (vì BE_|_ AC)
\(\widehat{AMB}=\frac{1}{2}\)(sđ \(\widebat{DC}\)+ sđ \(\widebat{AB}\))=90o (vì AD _|_ BC)
Vậy ta có: \(sđ\widebat{CE=sđ\widebat{CD}}\)\(\Leftrightarrow CD=CE\left(đpcm\right)\)
Nguồn: loigiaihay.com
+ ) Ta thấy ngay hai tam giác vuông AHC và ANC có chung cạnh huyền AC nên A, H, N, C cùng thuộc đường tròn đường kính AC.
\(\Rightarrow\widehat{HNA}=\widehat{HCA}\) (Hai góc nội tiếp cùng chắn cung AH)
Ta thấy ngay hai tam giác vuông AMB và AHB có chung cạnh huyền AB nên A, M, H, B cùng thuộc đường tròn đường kính AB.
\(\Rightarrow\widehat{HMN}=\widehat{ABH}\) (Góc ngoài tại đỉnh đối diện bằng góc trong tại đỉnh)
Vậy nên \(\Delta ABC\sim\Delta HMN\left(g-g\right)\)
+) Ta có \(\widehat{ADC}=\widehat{ABC}\) (Hai góc nội tiếp cùng chắn cung AC)
Mà \(\Delta ABC\sim\Delta HMN\Rightarrow\widehat{ABC}=\widehat{HMN}\)
nên \(\widehat{ADC}=\widehat{HMN}\)
Chúng lại ở vị trí so le trong nên DC // HM
Ta có \(DC\perp AC\Rightarrow HM\perp AC\)
Gọi J là trung điểm AB
Ta có ngay IJ là đường trung bình tam giác ABC nên IJ // AC
Vậy nên \(HM\perp IJ\)
Mà J là tâm đường tròn ngoại tiếp tứ giác AMHB nên IJ vuông góc cung HM tại trung điểm HM hay IJ là trung trực của HM.
Vậy thì IM = IH.
Tương tự ta có IM = IH = IN hay I là tâm đường tròn ngoại tiếp tam giác HMN.
a) Xét Δ AFH vuông tại F => A, F, H thuộc đường tròn đường kính AH
ΔAGH vuông tại G => A, G, H thuộn đường tròn đường kính AH
=> Tứ giác AFHG nội tiếp đường tròn đường kính AH
CMTT => BGFC nội tiếp đường tròn đường kính BC
b) Do I là tâm đường tròn ngoại tiếp tứ giác AFHG => I là trung điểm AH
M là tâm đường tròn ngoại tiếp tứ giác BGFC => M là trrung điểm BC
Xét ΔAHG vuông tại G, trung tuyến GI => GI = IA = IH => ΔIAG cân tại I => \(\widehat{IAG}=\widehat{IGA}\)
CMTT => \(\widehat{MCG}=\widehat{MGC}\). Mà \(\widehat{MCG}=\widehat{IAG}\) (cùng phụ \(\widehat{GBC}\)) => \(\widehat{MGC}=\widehat{IGA}\)
=> \(\widehat{IGA}+\widehat{IGH}=\widehat{MGC}+\widehat{IGH}=\widehat{IGM}=90^o\) => IG ⊥ MG
=> MG là tiếp tuyến đường tròn tâm I
c) Kẻ đường kính AK của đường tròn (O) => \(\widehat{ACK}=90^o\) (góc nội tiếp chắn nửa đường tròn) => ΔACK vuông tại C => \(\widehat{KAC}=90^o-\widehat{AKC}\)
ΔABE vuông tại E => \(\widehat{EAB}=90^o-\widehat{ABE}\) hay \(\widehat{DAB}=90^o-\widehat{ABC}\)
Xét đường tròn (O) có \(\widehat{ABC}=\widehat{AKC}\) (cùng chắn \(\stackrel\frown{AC}\))
=> \(90^o-\widehat{AKC}=90^o-\widehat{ABC}\) => \(\widehat{DAB}=\widehat{KAC}\) => \(\stackrel\frown{BD}=\stackrel\frown{KC}\) (góc nội tiếp bằng nhau chắn các cung bằng nhau)
=> BD = KC (hai cung bằng nhau căng hai dây bằng nhau)
Xét ΔAKC vuông tại C, theo định lý Pytago có: AC2 + KC2 = AK2
Xét ΔAEC vuông tại E, theo định lý Pytago có: EA2 + EC2 = AC2
ΔBED vuông tại E, theo định lý Pytago có: EB2 + ED2 = BD2
Mà BD = KC (cmt) => BD2 = KC2 => EB2 + ED2 = KC2
=> EA2 + EB2 + EC2 + ED2 = AC2 + KC2 = AK2 = (2R)2 = 4R2