Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left\{{}\begin{matrix}AM=MB\\AN=NC\end{matrix}\right.\Rightarrow MN\) là đtb tam giác ABC
\(\Rightarrow MN=\dfrac{1}{2}BC=7\left(cm\right)\)
\(b,\left\{{}\begin{matrix}AE=EM\\AF=FN\end{matrix}\right.\Rightarrow EF\) là đtb tam giác AMN
\(\Rightarrow EF=\dfrac{1}{2}MN=3,5\left(cm\right)\)
có m là trđ của cd rồi lại còn ef cắt bc tại m
a, xét tam giác DEM có AB // DM (gt) => ME/AE = DM/AB (ddl)
xét tam giác MFC có MC // AB (gt) => MF/FB = CM/AB (đl)
có DM = CM do M là trung điểm của CD (gt)
=> ME/AE = MF/FB xét tam giác ABM
=> EF // AB (đl)
b, gọi EF cắt AD;BC lần lượt tại P và Q
xét tam giác ABD có PE // AB => PE/AB = DE/DB (đl)
xét tam giác DEM có DM // AB => DE/DB = ME/MA (đl)
xét tam giác ABM có EF // AB => EF/AB = ME/MA (đl)
=> PE/AB = EF/AB
=> PE = EF
tương tự cm được FQ = EF
=> PE = EF = FQ
c, Xét tam giác DAB có PE // AB => PE/AB = DP/DA (đl)
xét tam giác ADM có PE // DM => PE/DM = AP/AD (đl)
=> PE/AB + PE/DM = DP/AD + AP/AD
=> PE(1/AB + 1/DM) = 1 (1)
xét tam giác AMB có EF // AB => EF/AB = MF/MB (đl)
xét tam giác BDM có EF // DM => EF/DM = BF/BM (đl)
=> EF/AB + EF/DM = MF/MB + BF/BM
=> EF(1/AB + 1/DM) = 1 (2)
xét tam giác ABC có FQ // AB => FQ/AB = CQ/BC (đl)
xét tam giác BMC có FQ // MC => FQ/MC = BQ/BC (đl)
=> FQ/AB + FQ/MC = CQ/BC + BQ/BC
có MC = DM (câu a)
=> FQ(1/AB + 1/DM) = 1 (3)
(1)(2)(3) => (1/AB + 1/DM)(PE + EF + FQ) = 3
=> PQ(1/AB + 1/DM) = 3
DM = 1/2 CD = 6
đến đây thay vào là ok
a) Xét ΔABC có
M là trung điểm của AB(gt)
N là trung điểm của AC(gt)
Do đó: MN là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
Suy ra: MN//BC và \(MN=\dfrac{BC}{2}\)(Định lí 2 về đường trung bình của tam giác)
b) Ta có: \(MN=\dfrac{BC}{2}\)(cmt)
nên \(MN=\dfrac{20}{2}=10\left(cm\right)\)
c) Xét hình thang BMNC(EF//BC) có
E là trung điểm của MB(gt)
F là trung điểm của NC(gt)
Do đó: EF là đường trung bình của hình thang BMNC(Định nghĩa đường trung bình của hình thang)
Suy ra: EF//BC//MN và \(EF=\dfrac{BC+MN}{2}\)(Định lí 4 về đường trung bình của hình thang)
d) Ta có: \(EF=\dfrac{BC+MN}{2}\)
nên \(EF=\dfrac{20+10}{2}=15\left(cm\right)\)