K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
24 tháng 11 2023

Lời giải:
Xét tam giác $ABM$ và $ACM$ có:

$AB=AC$

$\widehat{BAM}=\widehat{CAM}$ (do $AM$ là tia phân giác $\widehat{A}$)

$AM$ chung

$\Rightarrow \triangle ABM=\triangle ACM$ (c.g.c)

$\Rightarrow BM=CM$

24 tháng 11 2023

Hình vẽ

loading...  

26 tháng 4 2019

Hình tự vẽ

a) ΔABC vuông tại A.

Ta có: AB2 + BC2 = 62 + 82 = 100 (cm)

           BC2 = 102 = 100 (cm)    

Vì AB2 + BC2 = BC2 ( = 100 cm)

Nên ΔABC vuông tại A.

b) MA = MN.

Xét hai tam giác vuông ABM và NBM có:

BM: cạnh chung

∠ABM = ∠NBM (BM là phân giác của ∠ABC)

Do đó:ΔABM = ΔNBM (cạnh huyền - góc nhọn)

⇒  MA = MN (hai cạnh tương ứng)

c) ΔAMP = ΔNMC. MP > MN.

Xét hai tam giác vuông AMP và NMC có:

AM = MN (câu b)

∠AMP = ∠NMC (hai góc đối đỉnh) 

Do đó: ΔAMP = ΔNMC (cạnh góc vuông - góc nhọn kề)

⇒ PM = MC (hai cạnh tương ứng) (1)

Xét ΔNMC vuông tại N có: MC > MN (định lí) (2)

Từ (1) và (2) suy ra: MP > MN

a: Xét ΔABD và ΔAMD có

AB=AM

góc BAD=góc MAD

AD chung

Do đó; ΔABD=ΔAMD

b: Xét ΔDBN và ΔDMC có

góc DBN=góc DMC

DB=DM

góc BDN=góc MDC

Do đó; ΔDBN=ΔDMC

=>BN=MC

c: Xét ΔANC có AB/BN=AM/MC

nên BM//CN

a: Xét ΔBAD và ΔBMD có

BA=BM

góc ABD=góc MBD

BD chung

=>ΔBAD=ΔBMD

b: DA=DM

=>góc DAM=góc DMA

 

+ ΔABC có Aˆ+ABCˆ+ACBˆ=180o. hay 60o+ABCˆ+ACBˆ=180oABCˆ+ACBˆ=120o 

ABCˆ+ACBˆ2=60o=ABCˆ2+ACBˆ2=B1ˆ+C 

+ Gọi CNBM=G 

+ Δ có B1ˆ+C1ˆ+BGCˆ=180o. Hay 60o+BGCˆ=180oBGCˆ=120o 

+ Gọi GD là tia phân giác BGCˆ→G2ˆ=G3ˆ=60o 

+ Tính G1ˆ=G4ˆ=G2ˆ=G3ˆ=60o 

+ CM ΔNGBDGB (gcg) →BN=DB (2 cạnh tương ứng) 

+CM ΔMGCDGC(gcg) →CM=CD (2 cạnh tương ứng) 

+ Ta có BC=BD+CD=BN+CM (đpcm)

Nguồn: Chôm 

14 tháng 5 2021

a) AB < AC < BC ⇒ góc ACB < góc ABC < góc BAC (quan hệ giữa góc và cạnh đối diện)

a: AC^2=BA^2+BC^2

=>ΔABC vuông tại B

b: Xét ΔABM và ΔANM có

AB=AN

góc BAM=góc NAM

AM chung

=>ΔABM=ΔANM

=>góc ANM=90 độ

=>MN vuông góc AC

c: AB=AN

MB=MN

=>AM là trung trực của BN

d: CT//BN

BN vuông góc AM

=>AM vuông góc CT

Xét ΔATC có

AM,CB là đường cao

AM cắt CB tại M

=>M là trực tâm

=>TM vuông góc AC

mà MN vuông góc AC

nên T,M,N thẳng hàng

a: BC=căn 6^2+8^2=10cm

b: Xét ΔABM vuông tại A và ΔKBM vuông tại K có

BM chung

góc ABM=góc KBM

=>ΔBAM=ΔBKM

c: AM=MK

MK<MC

=>AM<MC

d: Xét ΔMAD vuông tại A và ΔMKC vuông tại K có

MA=MK

góc AMD=góc KMC

=>ΔMAD=ΔMKC

=>AD=KC

Xét ΔBDC có BA/AD=BK/KC

nên AK//DC