Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔBEA∆BEA và ΔCDA∆CDA có:
BA=CABA=CA (gt)
ˆAA^ chung
AE=ADAE=AD (gt)
⇒ΔBEA=ΔCDA⇒∆BEA=∆CDA (c.g.c)
⇒BE=CD⇒BE=CD (hai cạnh tương
a) tam giác ABC có AB = AC (gt)
=> tam giác ABC cân tại A => góc B = góc C
lại có: D thuộc AB, E thuộc AC nên DB = AB - AD
EC = AC - AE
mà AB = AC, AD = AE => DB = EC
xét tam giác DBC và tam giác ECB có: DB = EC (cmt)
góc DBC = góc ECB (cmt)
BC: cạnh chung
=> tam giác DBC = tam giác ECB (cgc) => DC = BE (đpcm)
a: Xét ΔAEB và ΔADC có
AE=AD
\(\widehat{DAC}\) chung
AB=AC
Do đó: ΔAEB=ΔADC
Suy ra: BE=CF
b: Ta có: AD+DB=AB
AE+EC=AC
mà AD=AE
và AB=AC
nên DB=EC
Xét ΔDBC và ΔECB có
DB=EC
\(\widehat{DBC}=\widehat{ECB}\)
BC chung
Do đó: ΔDBC=ΔECB
Suy ra: \(\widehat{ODB}=\widehat{OEC}\)
Xét ΔODB và ΔOEC có
\(\widehat{ODB}=\widehat{OEC}\)
BD=EC
\(\widehat{DBO}=\widehat{ECO}\)
Do đó: ΔODB=ΔOEC
a: Xét ΔABE và ΔACD có
AB=AC
\(\widehat{A}\) chung
AE=AD
Do đó: ΔABE=ΔACD
a, xét tam giác ABE và tam giác ACD có:
AB=AC; góc A chung; AD=AE
nên tam giác ABE= tam giác ACD(c.g.c)
suy ra BE=CD