K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2021

\(\left\{{}\begin{matrix}AC=BC\\AN=NB\\CN\text{ chung}\end{matrix}\right.\Rightarrow\Delta ACN=\Delta BCN\left(c.c.c\right)\\ \Rightarrow\widehat{ANC}=\widehat{BNC}\\ \text{Kết hợp với }AN=NB;NI\text{ chung}\\ \Rightarrow\Delta AIN=\Delta BIN\left(c.g.c\right)\\ \Rightarrow AI=BI\left(1\right)\)

Cmtt \(\Rightarrow\Delta ABM=\Delta CBM\left(c.c.c\right)\)

\(\Rightarrow\widehat{AMB}=\widehat{CMB}\\ \Rightarrow\Delta AIM=\Delta CIM\\ \Rightarrow AI=CI\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow AI=BI=CI\)

30 tháng 9 2017

hai tam giác bằng nhau

có gì mà phải help me

9 tháng 1 2021

Hình bạn tự vẽ nhé.

a. Vì AD là tia phân giác của \(\widehat{BAC}\) (gt)

nên \(\widehat{BAD}=\widehat{CAD}\)

Xét \(\Delta ABD\) và \(\Delta ACD\) có:

AD là cạnh chung

\(\widehat{BAD}=\widehat{CAD}\) (chứng minh trên)

AB = AC

\(\Rightarrow\Delta ABD=\Delta ACD\left(c.g.c\right)\)   (đpcm)

b. Gọi giao điểm của MN và AD là S

Ta có: \(\widehat{BAD}=\widehat{CAD}\Rightarrow\widehat{MAS}=\widehat{NAS}\)

Xét \(\Delta AMS\) và \(\Delta ANS\) có:

AS là cạnh chung

\(\widehat{MAS}=\widehat{NAS}\)  (chứng minh trên)

AM = AN (gt)

\(\Rightarrow\Delta AMS=\Delta ANS\left(c.g.c\right)\)

\(\Rightarrow\widehat{ASN}=\widehat{ASM}\) (2 góc tương ứng)

Mà \(\widehat{ASN}+\widehat{ASM}=180^o\) (2 góc kề bù)

\(\Rightarrow\widehat{ASN}=\widehat{ASM}=\dfrac{180^o}{2}=90^o\)

\(\Rightarrow AS\perp MN\)

hay \(AD\perp MN\)   (đpcm)

c. Ta có: AM = AN (gt)

\(\Rightarrow\Delta AMN\) cân tại A (dấu hiệu nhận biết)

\(\Rightarrow\widehat{AMN}=\dfrac{180^o-\widehat{MAN}}{2}\)  (định lí)

hay \(\widehat{AMN}=\dfrac{180^o-\widehat{BAC}}{2}\)  (1)

Lại có: AB = AC (gt)

\(\Rightarrow\Delta ABC\) cân tại A (dấu hiệu nhận biết)

\(\Rightarrow\widehat{ABC}=\dfrac{180^o-\widehat{BAC}}{2}\) (định lí)  (2)

Từ (1), (2)

\(\Rightarrow\widehat{AMN}=\widehat{ABC}\)

Mà 2 góc này ở vị trí đồng vị

\(\Rightarrow\) MN // BC (dấu hiệu nhận biết)  (*)

Xét \(\Delta MOP\) và \(\Delta BDO\) có:

MO = BO (vì O là trung điểm của BM)

\(\widehat{MOP}=\widehat{BOD}\) (2 góc đối đỉnh)

OD = PO (gt)

\(\Rightarrow\Delta MOP=\Delta BOD\left(c.g.c\right)\)

\(\Rightarrow\widehat{MOP}=\widehat{BDO}\) (2 góc tương ứng)

Mà 2 góc này ở vị trí so le trong

\(\Rightarrow\) MP // BC (dấu hiệu nhận biết)  (**)

Từ (*), (**)

\(\Rightarrow\) Qua điểm M ở ngoài đường thẳng BC, ta vừa có MN // BC, MP // BC  (trái với tiên đề Ơ-clit)

\(\Rightarrow\) 3 điểm P, M, N thẳng hàng   (đpcm)

9 tháng 1 2021

hey .you vẽ hộ mk cái hình vs ạ

a) Ta có: \(AM=MC=\dfrac{AC}{2}\)(M là trung điểm của AC)

\(AN=NB=\dfrac{AB}{2}\)(N là trung điểm của AB)

mà AC=AB(gt)

nên AM=MC=AN=NB

Xét ΔAMB và ΔANC có 

AM=AN(cmt)

\(\widehat{BAM}\) chung

AB=AC(gt)

Do đó: ΔAMB=ΔANC(c-g-c)

b) Xét ΔABC có AB=AC(Gt)

nên ΔABC cân tại A(Định nghĩa tam giác cân)

\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy)

hay \(\widehat{NBC}=\widehat{MCB}\)

Xét ΔNBC và ΔMCB có 

NB=MC(cmt)

\(\widehat{NBC}=\widehat{MCB}\)(cmt)

BC chung

Do đó: ΔNBC=ΔMCB(c-g-c)

16 tháng 1 2021

Bạn ơi còn phần c) đâu

a: Xét ΔABC có AB=AC

nên ΔABC cân tại A

mà AI là đường phân giác ứng với cạnh BC

nên I là trung điểm của BC