Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABE và ΔADE có
AB=AD
\(\widehat{BAE}=\widehat{DAE}\)
AE chung
Do đó: ΔABE=ΔADE
Suy ra: BE=DE
b: Ta có: BE=DE
nên E nằm trên đường trung trực của BD(1)
Ta có: AB=AD
nên A nằm trên đường trung trực của BD(2)
Từ (1) và (2) suy ra AE là đường trung trực của BD
hay AE\(\perp\)BD
c: Xét ΔBEK và ΔDEC có
\(\widehat{KBE}=\widehat{CDE}\)
BE=DE
\(\widehat{BEK}=\widehat{DEC}\)
Do đó: ΔBEK=ΔDEC
d: Xét ΔAKC có
AB/BK=AD/DC
nên BD//KC
a, Xét Δ ADB và Δ ADE có:
AD chung
góc BAD = góc EAD
AB = AE
⇛Δ ADB =Δ ADE(c-g-c)
b/ Xét 2 TG ABC và TG AEK,ta có:
A chung
E=B (2 TG = nhau câu a)
AB=AE (gt)
=>TG ABC=TG AEK (g-c-g)
=>AK=AC (cặp cạnh tương ứng)
Ta có :AK=AB+AC
AC=AE+EC
Mà AC=Ak
AB=AE
=>BK=EC
Xét 2 TG DBK và TG DEC,ta có:
BK=EC(cmt)
Góc BDK = góc EDC (đối đỉnh)
BD=ED(câu a)
=>TG DBK=TG DEC (c-g-c)
c/Vì AK=AC (TG AKE=TG ACB) nên TG AKC cân tại A
Cho tam giac ABC có AB < AC; AD là phân giác của goc A. Trên cạnh AC lấy điểm E sao cho AB = AE.
a. Chứng minh tam giac ABD = tam giac AED
b. Trên tia AB lấy điểm F sao cho AF = AC. Chứng minh tam giac FBD = tam giac CED và DF = DC
c. Chứng minh AD vuong goc voi CE d. Chứng minh BE // CF.
( giup minh voi cac ban oi )
a: Xét ΔABD vuông tại B và ΔAED vuông tại E có
AD chung
góc BAD=góc EAD
=>ΔABD=ΔAED
=>DB=DE
b: Xét ΔAEK vuông tại E và ΔABC vuông tại B có
AE=AB
góc EAK chung
=>ΔAEK=ΔABC
=>AK=AC
=>ΔAKC cân tại A
d) tam giác KBE = t/g CDE
=> KE = CE ( 2 cạnh tương ứng)
=> t/g KEC cân tại E
=> góc EKC = g ECK (3)
g BED= g KEC (4)
Từ (2),(3),(4) => gOBE=gODE=gBED=gKEC
=> BD//KC