Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét tam giác AHI và tam giác AKI có AI chugn
góc HAI = góc KAI do AI là pg của góc BAC (gt)
góc AHI = góc AKI =90
=> Tam giác AHI = tam giác AKI (ch-cgv)
=> HI = KI (đn)
b, xét tam giác BHI và tam giác CKI có: HI = KI (Câu a)
góc BHI = góc CKI = 90
IB = IC do I thuộc đường trung trực của BC (Gt)
=> tam giác BHI = tam giác CKI (ch-cgv)
=> BH = CK (đn)
Trả lời:
a) Xét tam giác AHI và AKI có :
AI là cạnh chung
góc HAI =góc KAI
góc H = góc K (=90)
suy ra tam giác AHI = tam giác AKI (cạnh huyền - góc nhọn )
suy ra góc AIH =AIK (hai góc tg ứng)
suy ra góc HIB = KIC (cùng kề vs hai góc bằng nhau )
xét tam giác HIB và KIC có
HIB = KIC (chứng minh trên )
BHI=CKI (=90)
BI=IC
suy ra tam giác HIB=KIC(cạnh huyền góc nhọn )
suy ra BH=CK ( hai cạnh tương ứng ) (điều phải chứng minh )
b) Xét tam giác AHI và AKI có :
AI là cạnh chung
góc HAI =góc KAI
góc H = góc K (=90)
suy ra tam giác AHI = tam giác AKI (cạnh huyền - góc nhọn )
suy ra góc AIH =AIK (hai góc tg ứng)
suy ra góc HIB = KIC (cùng kề vs hai góc bằng nhau )
xét tam giác HIB và KIC có
HIB = KIC (chứng minh trên )
BHI=CKI (=90)
BI=IC
suy ra tam giác HIB=KIC(cạnh huyền góc nhọn )
suy ra BH=CK ( hai cạnh tương ứng ) (đpcm)
~Học tốt!~
a, Xét tg AHI và tg AKI ta có:
góc H = góc K = 90
AI là cạnh chung
góc HAI = góc KAI ( AI là tia phân giác góc BAC)
=> tg AHI =tg AKI ( cạnh huyền-góc nhọn)
=> AH=AK
A B M K C I H
a) Xét \(\Delta AHI\)và \(\Delta AKI\)có :
AI cạnh chung
\(\widehat{IHA}=\widehat{IKA}\)(AI là tia phân giác của A)
=> \(\Delta AHI=\Delta AKI\left(ch-gn\right)\)
=> AH = AK(2 cạnh tương ứng)
b) Gọi M là trung điểm của BC
Xét \(\Delta BMI\)và \(\Delta CMI\)có :
BM = CM(gt)
\(\widehat{BMI}=\widehat{CMI}=90^0\)
MI cạnh chung
=> \(\Delta BMI=\Delta CMI\left(c-g-c\right)\)
=> IB = IC(2 cạnh tương ứng)
\(\Delta AHI=\Delta AKI\left(cmt\right)\)=> IH = IK(hai cạnh tương ứng)
Xét \(\Delta IHB\)và \(\Delta IKC\)có :
+) IH = IK(chứng minh trên)
+) IB = IC(chứng minh trên)
=> IH + IB = IK + KC
=> BH = CK(hai cạnh tương ứng)
c) Ta có : AC = AK + KC (1)
AB = AH - BH (2)
Từ (1) và (2) suy ra : AC + AB = (AK + AH) + (KC - BH)
Do AH = AK,BH = CK => AC + AB = 2AK , suy ra :
AK = \(\frac{AC+AB}{2}\)
Tương tự ta được \(CK=\frac{AC-AB}{2}\)