K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2019

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Theo đề bài ta có:

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Theo tính chất dãy tỉ số bằng mhau ta có:

Giải sách bài tập Toán 7 | Giải sbt Toán 7

tam giác ABC vuông tại A

Áp dụng định lí pitago vào tam giác ABC ta có:

BC2 = AB2 + AC2 (2)

Từ (1) và (2) suy ra:

Giải sách bài tập Toán 7 | Giải sbt Toán 7

AB2 = 9. 9 = 81 ⇒ AB = 9 cm (vì AB > 0)

AC2 = 16. 9 = 144 ⇒ AC = 12 cm (vì AC > 0)

29 tháng 4 2020

Mình làm mẫu cho bạn câu a) nhé 

a) Theo định lí Pytago ta có :

BC2 = AB2 + AC2 

152 = AB2 + AC2

AB : AC = 3:4

=> \(\frac{AB}{3}=\frac{AC}{4}\)=> \(\frac{AB^2}{3^2}=\frac{AC^2}{4^2}\)và AB2 + AC2 = 152

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{AB^2}{3^2}=\frac{AC^2}{4^2}=\frac{AB^2+AC^2}{3^2+4^2}=\frac{15^2}{25}=\frac{225}{25}=9\)

\(\frac{AB^2}{3^2}=9\Rightarrow AB^2=81\Rightarrow AB=\sqrt{81}=9cm\)

\(\frac{AC^2}{4^2}=9\Rightarrow AC^2=144\Rightarrow AC=\sqrt{144}=12cm\)

Ý b) tương tự nhé 

10 tháng 2 2022

thank you

 

8 tháng 1 2016

Ta có: AB = 15cm ; AC = 20cm

=> AB2 + AC2 = 152 + 202 = 225 + 400 = 625 (cm) (1)

BC = 25 => BC2 = 252 = 625 (cm) (2)

Từ (1) và (2) => AB2 + AC2 = BC2

Vậy tam giác ABC vuông tại A (đpcm).

8 tháng 1 2016

ta có: AB = 15cm ; AC = 20cm

=> AB2 + AC2 = 152 + 202 = 225 + 400 = 625 (cm) (1)

BC = 25 => BC2 = 252 = 625 (cm) (2)

Từ (1) và (2) => AB2 + AC2 = BC2

Vậy tam giác ABC vuông tại A (đpcm).

6 tháng 3 2021

AB=\(\sqrt{45}\)

AC=\(\sqrt{80}\)

1.Cho tam giác ABC ,A=90.Biết AB+AC=49cm,AB-AC=7cm.Tính cạnh BC .2.Cho tam giác cân ABC, AB=AC=17cm.Kẻ BDvuôngAC.Tính cạnh đáy BC, biết BD=15cm.3. Tính cạnh đáy BC của  tam giác cân ABC, biết rằng đường vuông góc BH kẻ từ B xuống cạnh AC chia AC thành 2 phần:AH=8cm,HC=3cm.4. Một tam giác vuông có cạnh huyền là 102 cm, các cạnh góc vuông tỉ lệ với 8:5. Tính các cạnh của tam giác vuông đó.5. Cho tam giác ABC, biết...
Đọc tiếp

1.Cho tam giác ABC ,A=90.Biết AB+AC=49cm,AB-AC=7cm.Tính cạnh BC .

2.Cho tam giác cân ABC, AB=AC=17cm.Kẻ BDvuôngAC.Tính cạnh đáy BC, biết BD=15cm.

3. Tính cạnh đáy BC của  tam giác cân ABC, biết rằng đường vuông góc BH kẻ từ B xuống cạnh AC chia AC thành 2 phần:AH=8cm,HC=3cm.

4. Một tam giác vuông có cạnh huyền là 102 cm, các cạnh góc vuông tỉ lệ với 8:5. Tính các cạnh của tam giác vuông đó.

5. Cho tam giác ABC, biết BC bằng 52cm, AB = 20cm ,AC=48 cm.

a, Chứng minh tam giác ABC vuông ở A;

b, Kẻ AH vuông góc với BC. Tính AH .

6. Cho tam giác vuông cân ABC, A=90.Qua A kẻ đường thẳng d tùy ý. Từ B và C kẻ BH vuông d. Chứng minh rằng tổng BH^2+CK^2 ko phụ thuộc vào vị trí của đường thẳng d. 

7. Cho tam giác vuông ABC ,A= 90 độ. Trên nửa mặt phẳng bờ AC không chứa điểm B, kẻ tia CX sao cho CA là tia phân giác của gócBCx.Từ A kẻ AE vuông Có, từ B kẻ BD vuông AE. Gọi AH là đường cao của tam giác ABC. Chứng minh rằng :

a, A là trung điểm của DE 

b, DHE=90 độ 

8. Cho tam giác ABC có A bằng 90 độ,AB=8 cm,BC =17cm.Trên nửa mặt phẳng bờ AC ko chứa điểm B, vẽ tia CD vuông với AC và CD=36cm.Tính tổng độ dài các đoạn thẳngAB+BC+CD+DA. 

4

Bài 1:

A C B

Độ dài cạnh AB: ( 49 + 7 ) : 2 = 28 (cm)

Độ dài cạnh AC: 28 - 7 = 21 (cm)

Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A có:

\(BC^2=AC^2+AB^2\)

Hay \(BC^2=21^2+28^2\)

\(\Rightarrow BC^2=441+784\)

\(\Rightarrow BC^2=1225\)

\(\Rightarrow BC=35\left(cm\right)\)

Bài 2:

A B C D

Áp dụng định lý Py-ta-go vào tam giác ABD vuông tại D có:

\(AB^2=AD^2+BD^2\)

\(\Rightarrow AD^2=AB^2-BD^2\)

Hay \(AD^2=17^2-15^2\)

\(\Rightarrow AD^2=289-225\)

\(\Rightarrow AD^2=64\)

\(\Rightarrow AD=8\left(cm\right)\)

Trong tam giác ABC có:

\(AD+DC=AC\)

\(\Rightarrow DC=AC-AD=17-8=9\left(cm\right)\)

Áp dụng định lý Py-ta-go vào tam giác BCD vuông tại D có:

\(BC^2=BD^2+DC^2\)

Hay \(BC^2=15^2+9^2\)

\(\Rightarrow BC^2=225+81\)

\(\Rightarrow BC^2=306\)

\(\Rightarrow BC=\sqrt{306}\approx17,5\left(cm\right)\)