Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có
BK=KC (GT)
AK=KD( Đối xứng)
suy ra tứ giác ABDC là hình bình hành (1)
mà góc A = 90 độ (2)
từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật
b) ta có
BI=IA
EI=IK
suy ra tứ giác AKBE là hình bình hành (1)
ta lại có
BC=AD ( tứ giác ABDC là hình chữ nhật)
mà BK=KC
AK=KD
suy ra BK=AK (2)
Từ 1 và 2 suy ra tứ giác AKBE là hình thoi
c) ta có
BI=IA
BK=KC
suy ra IK là đường trung bình
suy ra IK//AC
IK=1/2AC
mà IK=1/2EK
Suy ra EK//AC
EK=AC
Suy ra tứ giác AKBE là hình bình hành
B A C D E K
a) Để chứng minh tứ giác AHBE là hình chữ nhật, ta cần chứng minh AH || BE và AH = BE.
Vì ΔABC cân tại A, nên đường cao AH là đường trung trực của BC. Do đó, AH vuông góc với BC.
Vì E là điểm đối xứng của H qua M, nên EM = MH và góc EMH = góc HME = 90 độ.
Do đó, ta có:
- AH || BE (vì AH và BE đều vuông góc với BC).
- AH = EM = BE (vì EM = MH và E là điểm đối xứng của H qua M).
Vậy tứ giác AHBE là hình chữ nhật.
b) Gọi F là điểm đối xứng của A qua BC. Ta cần chứng minh tứ giác ABFC là hình thoi.
Vì F là điểm đối xứng của A qua BC, nên AF = AC và góc AFC = góc ACB.
Vì ΔABC cân tại A, nên góc ACB = góc ABC.
Do đó, ta có:
- AF = AC (vì F là điểm đối xứng của A qua BC).
- góc AFC = góc ACB = góc ABC.
Vậy tứ giác ABFC là hình thoi.
c) Gọi K là giao điểm của FM và BC. Ta cần chứng minh 4HK = CK.
Vì M là trung điểm của AB, nên MK || AC và MK = 1/2 AC.
Vì E là điểm đối xứng của H qua M, nên EM = MH.
Do đó, ta có:
- HK = EM (vì HK || EM và HK = EM).
- CK = AC (vì CK là đường chéo của hình chữ nhật AHBE).
Vậy ta có:
4HK = 4EM = 2EM + 2EM = 2EM + 2MH = EH + CH = CK.
Vậy 4HK = CK.
a: Xét tứ giác ADCH có
I là trung điểm cuả AC
I là trung điểm của HD
Do đó: ADCH là hình bình hành
mà \(\widehat{AHC}=90^0\)
nên ADCH là hình chữ nhật