K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2020

kẻ đường cao AH của tam giac  cân ABC ta có AH đồng thời là đường phân giác của góc BAC => \(AH\perp AM\)

mà \(AH\perp BC=>MN//BC\)

zì \(\widehat{BAH}=\widehat{HAC}=>\widehat{BAM}=\widehat{CAN}\)

do đó \(\widehat{MAC}=\widehat{NAB}\)(1)

mặt khác theo giả thiết ta có 

\(AM.AN=AB^2=>\frac{AM}{AB}=\frac{AB}{AN}\)

mà \(AB=AC\left(gt\right)\Rightarrow\frac{AM}{AC}=\frac{AB}{AM}\left(2\right)\)

từ (1) zà 2 => \(\Delta ANB~\Delta ACM\left(c.g.c\right)\)

11 tháng 4 2021

Mình đang cần gấp 

10 tháng 3 2019

mik ko vẽ hình đc xl! bucminh

Ta có: gocsBAx=gocCAy(x là tia đối cạnh AC; y là tia đối cạnh AB)

⇔ gocNAC=gocMAB(AM tia pgi goc BAx; AN tia pgi gocCAy)

⇒gocBAN=gocNAC

Lại có : AM.AN=AB2

⇔ AB/AM=AN/AB=AN/AC(AB=AC/△ABC cân tại A)

Xét △ABN vs △AMC

có: \(\left\{{}\begin{matrix}\text{gocBAN=gocNAC}\\\frac{AB}{AM}=\frac{AN}{AC}\end{matrix}\right.\)

=> △ABN ∼ △AMC(cgc)

23 tháng 4 2018

A B C D E H I O M N K d F G x y Q S

Gọi Q là điểm đối xứng với A qua M, S là điểm đối xứng với E qua M 

Lấy giao điểm của DB và EC kéo dài là F, gọi G là trung điểm của OF. Nối F với I.

Dễ dàng chứng minh được: \(\Delta\)AMC=\(\Delta\)BMQ (c.g.c) => ^MAC=^MQB

Suy ra AC // BQ (2 góc so le trong bằng nhau) => ^BAC+^ABQ=1800 (1)

Ta có: ^BAC+^EAD= 2.^BAC + ^CAE + ^DAB = (^BAC+^CAE) + (^BAC+^DAB) = ^BAE+^CAD=1800 (2)

Từ (1) và (2) => ^BAC+^ABQ=^BAC+^EAD => ^ABQ=^EAD

=> \(\Delta\)ABQ=\(\Delta\)EAD (c.g.c) = >^BAQ=^AED (2 góc tương ứng) hay ^BAM=^AEN

Xét \(\Delta\)ABM và \(\Delta\)EAN: ^BAM=^AEN; ^ABM=^EAN (Cùng phụ với ^BAH); AB=AE

=> \(\Delta\)ABM=\(\Delta\)EAN (g.c.g) => AM=EN (2 cạnh tương ứng)

Tương tự ta chứng minh AM=DN => DN=EN => N là trung điểm của DE

\(\Delta\)AEC=\(\Delta\)ABD (c.g.c) => EC=BD

\(\Delta\)EMC=\(\Delta\)SMB (c.g.c) => EC=SB 

=> BD=SB => Tam giác DBS cân tại B. Do ^SBF là góc ngoài của \(\Delta\)SDB

=> ^SBF=2. ^BDS .

\(\Delta\)EMC=\(\Delta\)SMB => ^MEC=^MSB => EC//SB hay EF//SB => ^SBF=^EFD (So le trong)

=> ^EFD = 2.^BDS (3)

Dễ thấy Bx và Cy là phân giác 2 góc ngoài của tam giác FBC. Chúng cắt nhau tại I

Nên FI là phân giác của ^CFB hay ^EFD => ^DFI=1/2 ^EFD (4)

Từ (3) và (4) => ^BDS=^DFI => DS//FI (2 góc so le trong)

Mà MN là đường trung bình của tam giác EDS => MN//FI (*)

Xét \(\Delta\)OIF:

K là trung điểm OI, G là trung điểm OF => KG là đường trung bình \(\Delta\)OIF => KG//FI (**)

Xét tứ giác BOCF: M; G lần lượt là trung điểm của 2 đường chéo BC và OF

FB giao CO tại D; FC giao BO tại E; N là trung điểm của DE

Tứ đó ta có: 3 điểm G;M;N cùng nằm trên đường thẳng Gauss của tứ giác BOCF

=> G,M,N thẳng hàng (***)

Từ (*); (**) và (***) => 3 điểm M;N;K thẳng hàng (Theo tiên đề Ơ-clit) (đpcm).

ΔAMC=ΔBMQ (c.g.c) => ^MAC=^MQB

Suy ra AC // BQ (2 góc so le trong bằng nhau) => ^BAC+^ABQ=1800 (1)

Ta có: ^BAC+^EAD= 2.^BAC + ^CAE + ^DAB = (^BAC+^CAE) + (^BAC+^DAB) = ^BAE+^CAD=1800 (2)

Từ (1) và (2) => ^BAC+^ABQ=^BAC+^EAD => ^ABQ=^EAD

=> ΔABQ=ΔEAD (c.g.c) = >^BAQ=^AED (2 góc tương ứng) hay ^BAM=^AEN

Xét ΔABM và ΔEAN: ^BAM=^AEN; ^ABM=^EAN (Cùng phụ với ^BAH); AB=AE

=> ΔABM=ΔEAN (g.c.g) => AM=EN (2 cạnh tương ứng)

Tương tự ta chứng minh AM=DN => DN=EN => N là trung điểm của DE

ΔAEC=ΔABD (c.g.c) => EC=BD

ΔEMC=ΔSMB (c.g.c) => EC=SB 

=> BD=SB => Tam giác DBS cân tại B. Do ^SBF là góc ngoài của ΔSDB

=> ^SBF=2. ^BDS .

ΔEMC=ΔSMB => ^MEC=^MSB => EC//SB hay EF//SB => ^SBF=^EFD (So le trong)

=> ^EFD = 2.^BDS (3)

Dễ thấy Bx và Cy là phân giác 2 góc ngoài của tam giác FBC. Chúng cắt nhau tại I

Nên FI là phân giác của ^CFB hay ^EFD => ^DFI=1/2 ^EFD (4)

Từ (3) và (4) => ^BDS=^DFI => DS//FI (2 góc so le trong)

Mà MN là đường trung bình của tam giác EDS => MN//FI (*)

Xét ΔOIF:

K là trung điểm OI, G là trung điểm OF => KG là đường trung bình ΔOIF => KG//FI (**)

Xét tứ giác BOCF: M; G lần lượt là trung điểm của 2 đường chéo BC và OF

FB giao CO tại D; FC giao BO tại E; N là trung điểm của DE

Tứ đó ta có: 3 điểm G;M;N cùng nằm trên đường thẳng Gauss của tứ giác BOCF

=> G,M,N thẳng hàng (***)

Từ (*); (**) và (***) => 3 điểm M;N;K thẳng hàng (Theo tiên đề Ơ-clit) (đpcm).

9 tháng 1 2022

Ta có: MN // AB (gt). \(\Rightarrow\left\{{}\begin{matrix}\widehat{MAB}=\widehat{ABC}\\\widehat{NAC}=\widehat{ACB}\end{matrix}\right.\) (so le trong).

Mà \(\widehat{ABC}=\widehat{ACB}\) (Tam giác ABC cân).

\(\Rightarrow\widehat{MAB}=\widehat{NAC.}\)

Xét tam giác AMB và tam giác ANC có:

+ AM = AN (A là trung điểm của MN).

+ AB = AC (gt).

\(\widehat{MAB}=\widehat{NAC}\left(cmt\right).\)

\(\Rightarrow\) Tam giác AMB = Tam giác ANC (c - g - c).

Xét tứ giác MNCB có: \(\text{MN // CB}\) (gt).

\(\Rightarrow\) Tứ giác MNCB là hình thang.

Mà \(\widehat{M}=\widehat{N}\) (Tam giác AMB = Tam giác ANC).

\(\Rightarrow\) Tứ giác MNCB là hình thang cân.

16 tháng 10 2021

a: Xét tứ giác AIHK có 

HK//AI

HI//AK

Do đó: AIHK là hình bình hành

mà \(\widehat{KAI}=90^0\)

nên AIHK là hình chữ nhật