K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7

loading... 

a) ∆ABC vuông tại B (gt)

⇒ AB ⊥ BC

⇒ BM ⊥ BF

⇒ ∠MBF = 90⁰

Do EM // BC (gt)

⇒ EM // BF

EM // BC (gt)

E là trung điểm của AC (gt)

⇒ M là trung điểm của AB

⇒ EM là đường trung bình của ∆ABC

⇒ EM = BC : 2

F là trung điểm của BC (gt)

⇒ BF = CF = BC : 2

⇒ EM = BF = BC : 2

Tứ giác BMEF có:

EM // BF (cmt)

EM = BF = BC : 2 (cmt)

⇒ BMEF là hình bình hành

Mà ∠MBF = 90⁰ (cmt)

⇒ BMEF là hình chữ nhật

b) Do K đối xứng với B qua E (gt)

⇒ E là trung điểm của BK

Tứ giác BAKC có:

E là trung điểm của BK (cmt)

E là trung điểm của AC (gt)

⇒ BAKC là hình bình hành

Mà ∠ABC = 90⁰ (gt)

⇒ BAKC là hình chữ nhật

c) Do G đối xứng với E qua F (gt)

⇒ F là trung điểm của EG

∆ABC vuông tại B (gt)

E là trung điểm của AC (gt)

⇒ BE là đường trung tuyến ứng với cạnh huyền AC

⇒ BE = CE = AC : 2

Tứ giác BGCE có:

F là trung điểm của BC (gt)

F là trung điểm của EG (cmt)

⇒ BGCE là hình bình hành

Mà BE = CE (cmt)

⇒ BGCE là hình thoi

d) Để BGCE là hình vuông thì BE ⊥ CE

⇒ BE là đường cao của ∆ABC

Mà BE là đường trung tuyến của ∆ABC (cmt)

⇒ ∆ABC cân tại B

Lại có ∆ABC vuông tại B (gt)

⇒ ∆ABC vuông cân tại B

18 tháng 9 2021

\(a,\left\{{}\begin{matrix}BF=CF\\CE=EA\end{matrix}\right.\Rightarrow EF\) là đtb tam giác ABC

\(\Rightarrow EF=\dfrac{1}{2}AB;EF//AB\Rightarrow EF//BM\)

Mà \(ME//BF\) nên BMEF là hbh

Mà \(\widehat{ABC}=90^0\) nên BMEF là hcn

\(b,\left\{{}\begin{matrix}BE=EK\\AE=EC\\\widehat{ABC}=90^0\end{matrix}\right.\Rightarrow BAKC\) là hcn

\(c,\left\{{}\begin{matrix}EF=FG\\CF=BF\end{matrix}\right.\Rightarrow BGCE\) là hbh

Mà \(CE=BE\left(t/c.hình.chữ.nhật.BAKC\right)\)

Vậy BGCE là hình thoi

\(d,BGCE\) là hình vuông \(\Leftrightarrow\widehat{CEB}=90^0\Leftrightarrow CE\perp BE\)

\(\Leftrightarrow BE\) là đường cao tam giác ABC

Mà BE là trung tuyến tam giác ABC

Do đó tam giác ABC phải vuông cân

Vậy BGCE là hình vuông \(\Leftrightarrow\) tam giác ABC vuông cân