Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì tam giác ABC cân tại A nên AB = AC
góc ABC = góc ACB
Xét tam giác EBC vuông tại E và tam giác DCB vuông tại D, có:
BC là cạnh chung
góc EBC = góc DCB (góc ABC = góc ACB)
=> Tam giác EBC = Tam giác DCB ( cạnh huyền - góc nhọn )
b, Vì Tam giác EBC = Tam giác DCB
nên EB = DC
mà AB = AC
=> EB - AB = DC - AC
=> AE = AD
=> Tam giác AED cân tại A.
A B C D E O H K
a/ Ta có tam giác ABC cân tại A=> góc B=góc C
Mak BD và CE là tia phân giác 2 góc ấy nên góc EBO=góc OBC=góc OCB=góc DCO
Xét tam giác BCD và tam giác CBE có:
BC chung
góc EBC=góc DCB(tam giác ABC cân tại A)
góc OCB=góc OCB(cmt)
=> tam giác BCD=tam giác CBE(g-c-g)
mk ko bít vẽ hình nên đừng hỏi cái hình ở đâu???
a/ Ta có tam giác ABC cân tại A=> góc B=góc C
Mak BD và CE là tia phân giác 2 góc ấy nên góc EBO=góc OBC=góc OCB=góc DCO
Xét tam giác BCD và tam giác CBE có:
BC chung
góc EBC=góc DCB(tam giác ABC cân tại A)
góc OCB=góc OCB(cmt)
=> tam giác BCD=tam giác CBE(g-c-g)
tik nha bn các câu còn lại từ từ
a) Vì Bˆ=Cˆ(gt)B^=C^(gt)
Mà BD,CE là tia phân giác của BˆB^ và CˆC^
=>ABDˆ=DBCˆ=ACEˆ=ECBˆABD^=DBC^=ACE^=ECB^
Xét ΔBCD và ΔCBE có:
Bˆ=Cˆ(gt)B^=C^(gt)
BC: cạnh chung
DBCˆ=ECBˆDBC^=ECB^(gt)
=>ΔBCD=ΔCBE(g.c.g)
b)Vì OBCˆ=OCBˆ(cmt)OBC^=OCB^(cmt)
=>ΔOBC cân tại O
=>OB=OC
c) xét 2 tam giác EOB và DOC có:
góc EOB=góc DOC(đối đỉnh)
OB=OC
góc EBO=góc DOC(chứng minh ở phần a )
=> 2 tam giác EOB=DOC(g.c.c)
=> OE=OD(2 cạnh tương ứng)
=> góc BEO =góc CDO(2 góc tương ứng)
góc BEO+góc OEK=180độ(kề bù)
góc CDO+góc ODH=180độ(kề bù )
=> góc OEK=góc ODH
xét 2 tam giác OKE và OHD có:
góc OKE=góc OHD(=90độ)
cạnh OE=OD(chứng minh trên)
góc OEK=góc ODH(chứng minh trên )
=> 2 tam giác OKE = OHD(cạnh huyền- góc nhọn)
=> OK=OH(2 cạnh tương ứng)
a/ ta có \(\hept{\begin{cases}\widehat{ACE}=\widehat{BCE}=\widehat{\frac{ACB}{2}}\\\widehat{ABD}=\widehat{CBD}=\widehat{\frac{ABC}{2}}\end{cases}}\)( tia phân giác )
mà \(\widehat{ACB}=\widehat{ABC}\)( tam giác cân)
nên ACE=BCE=ABD=CBD
xét tam giác ABD và tam giác ACE có
ABD=ACE(cmt) ; góc A chung ; AB=AC(tam giác cân)
=> tam giác ABD=tam giác ACE (G-C-G) => BD=CE
b/ ta có BCE=CBD (cmt) => tam giác BIC cân tại I
xét tam giácBIE và tam giác CID có
BI=IC(tam giác BIC cân) ; BIE=ICD(ABD=ACE) ; BIE=CID(2 góc đối đỉnh)
=> tam giác BIE= tam giác CID (G-C-G)
c/ ta có BD, CE là tia p/g cắt nhau tại I => I là gđ của 3 đg phân giác của tam giác ABC
=> AI là tia phân giác của BAC
ta có AB=AE+BE ; AC=AD+DC
mà BE=CD ( tam giác BIE= tam giác CID) ; AB=AC (tam giác ABC cân)
nên AE=AD => tam giác AED cân
mặt khác AI là tia phân giác => AI là đường cao => AI vuông góc vs ED
ta có \(\hept{\begin{cases}\widehat{AED}=\frac{180^0-\widehat{A}}{2}\\\widehat{ABC}=\frac{180^0-\widehat{A}}{2}\end{cases}}\)(tam giác cân)
=> AED=ABC
mà 2 góc nằm ở vị trí đồng vị => ED//BC
A B C E D I
A) Ta có \(\Delta\)ABC cân tại A =>góc ABC= góc ACB => \(\frac{1}{2}\)góc ABC =\(\frac{1}{2}\)góc ACB => góc DBC = góc ECB = góc DBE = góc DCE
Xét \(\Delta\)ECB và \(\Delta\)DBC có
-góc DBC = góc ECB
- BC chung
-góc EBC = góc DCB
=> \(\Delta\)ECB = \(\Delta\)DBC ( g.c.g )
=> CE =BD
B, Ta có góc IBC = góc ICB ( góc DBC =góc ECB chứng minh trên )
=> \(\Delta\)IBC cân tại I => BI = CI
Xét \(\Delta\)BIE và \(\Delta\)CID có
- góc BIE = góc CID ( 2 góc đối đỉnh )
- IB =CI ( chứng minh trên )
- góc IBE =ICD ( chứng minh trên ý a )
=> \(\Delta\)BIE =\(\Delta\)CID (g.c.g)
C, Ta có AB =AC ( \(\Delta\)ABC cân tại A )
Mà BE =CD ( \(\Delta\) EBD =\(\Delta\)DCE )
=> AE =AD (1)
Lại có BD =CE ( chứng minh trên ý a )
Mà BI =CI ( chứng minh trên )
=> EI =ID (2)
Từ (1) và (2) => AI là đường trung trực của ED
=> AI \(⊥\)ED
Ta có \(\Delta\)EAD cân tại A có Ai là đường phân giác => góc EAI = góc DAI
Lại có \(\Delta\)ABC cân tại A có AI là tia phân giác đồng thời là đường cao => AI \(⊥\)BC
\(\hept{\begin{cases}AI⊥DE\\AI⊥BC\end{cases}}\)
=> ED sog sog BC
Chúc bạn học giỏi
Kết bạn với mình nha
la sao eo hieu anh oi em moi lop 5 anh lop 7 saoe lam dc ha troi,voi lai bai do cau hoi giong em nhung bai em la tim ti so % cua AI va IC anh lam dc ko giai giup em voi anh.Anh ko giai dc xung dang lam gi la lop 7 ha anh,em noi co dung ko????EM NOI VAY LA DUNG CHINH XAC,DUNG CCMNR!!!!!!!!!!!!:))))))
Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng:
a) AM=IK
b) Tam giác AMI bằng tam giác IKC
c) AI=IC
Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR
a) BD= CE
b) tam giác OEB bằng tam giác ODC
c) AO là tia phân giác cua góc BAC
Được cập nhật 41 giây trước (20:12)
a) Vì Bˆ=Cˆ(gt)B^=C^(gt)
Mà BD,CE là tia phân giác của BˆB^ và CˆC^
=>ABDˆ=DBCˆ=ACEˆ=ECBˆABD^=DBC^=ACE^=ECB^
Xét ΔBCD và ΔCBE có:
Bˆ=Cˆ(gt)B^=C^(gt)
BC: cạnh chung
DBCˆ=ECBˆDBC^=ECB^(gt)
=>ΔBCD=ΔCBE(g.c.g)
b)Vì OBCˆ=OCBˆ(cmt)OBC^=OCB^(cmt)
=>ΔOBC cân tại O
=>OB=OC
c) xét 2 tam giác EOB và DOC có:
góc EOB=góc DOC(đối đỉnh)
OB=OC
góc EBO=góc DOC(chứng minh ở phần a )
=> 2 tam giác EOB=DOC(g.c.c)
=> OE=OD(2 cạnh tương ứng)
=> góc BEO =góc CDO(2 góc tương ứng)
góc BEO+góc OEK=180độ(kề bù)
góc CDO+góc ODH=180độ(kề bù )
=> góc OEK=góc ODH
xét 2 tam giác OKE và OHD có:
góc OKE=góc OHD(=90độ)
cạnh OE=OD(chứng minh trên)
góc OEK=góc ODH(chứng minh trên )
=> 2 tam giác OKE = OHD(cạnh huyền- góc nhọn)
=> OK=OH(2 cạnh tương ứng)