Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét 2 tam giác vuông ΔABD và ΔACE có:
AB = AC (gt);
góc A chung
⇒ ΔABD = ΔACE (cạnh huyền - góc nhọn) (đpcm)
b, ΔABD = ΔACE ⇒ AD = AE
⇒ AC - AD = AB - AE ⇒ BE = CD
Xét 2 tam giác vuông ΔBIE và ΔCID có:
BE = CD
\(\widehat{BEI}=\widehat{CDI}\) ( đối đỉnh )
⇒ ΔBEI = ΔCDI (cạnh góc vuông - góc nhọn)
a) xét 2 tam giác vuông ABD và ACE có:
AB=AC(gt)
\(\widehat{A}\)chung
=> tam giác ABD=tam giác ACE(CH-GN)
b)vì tam giác ABD=tam giác ACE(câu a) => AD=AE
=> tam giác AED cân tại A
c) ta thấy H là trực tâm của tam giác cân ABC
=> \(\widehat{BAH}\)=\(\widehat{CAH}\)
gọi O là giao điểm của AH và ED
xét tam giác AOE và tam giác AOD có:
AE=AD(tam giác AED cân)
\(\widehat{EAO}\)=\(\widehat{DAO}\)(cmt)
AO chung
=> tam giác AOE=tam giác AOD(c.g.c)
=> OE=OD=> O là trung điểm của ED(1)
\(\widehat{AOE=\widehat{AOD}}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{AOE=\widehat{AOD}}\)=90 độ => AO\(\perp\)ED(2)
từ (1) và (2) => AH là trung trực của ED
A B C D E H O
a) Xét tam giác ABD và tg ACE có:
D^ = E^ = 90độ (gt)
A là góc chung
AB = AC ( do tam giác ABC cân tại A)
=> tam giác ABD = tam giác ACE (ch-gn)
b) Vì AD = AE ( tg ABD = tg ACE)
=> tg AED cân tại A.
c) Vì AD = AE (cmt)
=> A thuộc đường trung trực của ED.
Xét tg AEH và tg ADH có:
E^ = D^ = 90độ (gt)
AD = AE (cmt)
AH cạnh huyền chung.
=> tg AEH = tg ADH (ch-cgv)
=> HE = HD.
=> H thuộc đường trung trực của ED.
=> AH là đường trung trực của ED.
bạn không được nói vậy , nói thế là khinh người khác và đây là nơi chúng ta giao lưu giúp nhau mà , nên bạn không được nói bậy như thế.
z
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
góc A chung
Do đó: ΔABD=ΔACE
b: Xét ΔAEY vuông tại E và ΔADY vuông tại D có
AY chung
AE=AD
Do đó: ΔAEY=ΔADY
=>EY=DY
c: AB=AC
YB=YC
Do đó:AY là đường trung trực của BC
=>AY vuông góc với BC