K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(AM=MB=\dfrac{AB}{2}\)(M là trung điểm của AB)

\(AN=NC=\dfrac{AC}{2}\)(N là trung điểm của AC)

mà AB=AC(ΔABC cân tại A)

nên AM=MB=AN=NC

Xét ΔAMO vuông tại M và ΔANO vuông tại N có 

AO chung

AM=AN(cmt)

Do đó: ΔAMO=ΔANO(cạnh huyền-cạnh góc vuông)

b) Ta có: ΔAMO=ΔANO(cmt)

nên \(\widehat{MAO}=\widehat{NAO}\)(hai góc tương ứng)

hay \(\widehat{BAH}=\widehat{CAH}\)

mà tia AH nằm giữa hai tia AB,AC

nên AH là tia phân giác của \(\widehat{BAC}\)

c) Xét ΔAHB và ΔAHC có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAH}=\widehat{CAH}\)(cmt)

AH chung

Do đó: ΔAHB=ΔAHC(c-g-c)

Suy ra: HB=HC(hai cạnh tương ứng)

Ta có: ΔAHB=ΔAHC(cmt)

nên \(\widehat{AHB}=\widehat{AHC}\)(hai góc tương ứng)

mà \(\widehat{AHB}+\widehat{AHC}=180^0\)(hai góc kề bù)

nên  \(\widehat{AHB}=\widehat{AHC}=\dfrac{180^0}{2}=90^0\)

hay \(AH\perp BC\)(đpcm)

22 tháng 2 2021

Hình vẽ : tự vẽ

a) Ta có : tan giác ABC cân tại A ( gt )

\(\Rightarrow\) \(\left\{{}\begin{matrix}AB=AC\\\widehat{B}=\widehat{C}\end{matrix}\right.\)( t/c \(\Delta\) cân )

  Ta có : AB = AC ( cmt )

Mà : M là trung điểm của AB ( gt ), N là trung điểm của AC ( gt )

 \(\Rightarrow\dfrac{1}{2}AB=\dfrac{1}{2}AC\)

\(\Rightarrow AM=AN\)

Xét : \(\Delta\)AMO và \(\Delta\)ANO có

Cạnh AO chung

AM =AN (cmt )

 \(\widehat{AMO}=\widehat{ANO}=90^0\left(CM\perp AB,BN\perp AC\right)\)

\(\Rightarrow\Delta AMO=\Delta ANO\left(ch-cgv\right)\)

b) Có \(\Delta AMO=\Delta ANO\left(cmt\right)\)

\(\Rightarrow\widehat{MAO}=\widehat{NAO}\) ( 2 cạnh tương ứng ) 

Ta có :

\(\widehat{MAO}=\widehat{NAO}\left(cmt\right)\)

Mà : Tia AH nằm giữa tia AB và tia AC

\(\Rightarrow\) AH là tia phân giác của \(\widehat{A}\) ( đpcm )

c) Ta có : 

\(\Delta ABC\) cân tại A ( gt ), AH là tia phân giác của \(\widehat{A}\) ( cmt )

\(\Rightarrow\) AH cùng là đường cao và trung truyến

\(\Rightarrow\left\{{}\begin{matrix}AH\perp BC\\HB=HC\end{matrix}\right.\)( tính chất đường cao và trung tuyến )

d) Ta có :

 \(AH\perp BC\left(cmt\right)\)

\(\Rightarrow\widehat{OHC}=90^0\)

\(\Rightarrow\)OC lớn hơn HC

Mà HC = HB ( cmt )

\(\Rightarrow\) OC lớn hơn HB ( đpcm )

                                                             -Hết-

19 tháng 2 2020

a,Xét tam giái AMO và tam giác ANO, ta có:
+ Góc M = góc N =90 ( gt)
+ Có cạnh AO chung
==> hai tam giác này bằng nhau
b, Vì tam giác AMO = tam giác ANO nên góc MAO = góc NAO 
==> AO là tia phân giác của góc A
Hay AH là tia phân giác của góc A vì A, H, O thẳng hàng.

9 tháng 2 2021

Giải thích các bước giải:

Ta có :MA=MB,MO⊥AB→MO là trung trực của AB

Tương tự NO là trung trực AC→OA=OB=OC

Mà ΔABC cân tại A→AB=AC→ΔOAB=ΔOAC(c.c.c)

→BAO^=OAC^→AO là phân giác góc A

→AH là phân giacs góc A

Kết hợp ΔABC cân tại A

9 tháng 2 2021

Ta có :MA=MB,MO⊥AB→MO là trung trực của AB

Tương tự NO là trung trực AC→OA=OB=OC

Mà ΔABC cân tại A→AB=AC→ΔOAB=ΔOAC(c.c.c)

→BAO^=OAC^→AO là phân giác góc A

→AH là phân giacs góc A

Kết hợp ΔABC cân tại A

8 tháng 3 2020

a)+) Xét ∆ ABC cân tại A

=> AB = AC. ( Tính chất ∆ cân )

=> AM = AN

Và BM = Cn

+) Xét ∆AMO vuông tại M và ∆ ANO vuông tại N có

AO cạnh chung

AM = AN (cmt )

=> ∆AMO = ∆ANO (ch - cgv )

=> OM = ON ( 2 cạnh tương ứng )

+) Xét ∆ BOM vuông tại M và ∆ CON vuông tại N có

OM = ON ( cmt )

MB= NC ( cmt )

=> ∆ BOM = ∆ CON ( 2 cạnh gv )

=> BO = CO (2 cạnh tương ứng )

8 tháng 3 2020

Xin lỗi bạn bây h ms cs time trl

b) +) Theo câu a ta có

Δ AMO = Δ ANO

=> \(\widehat{MAO}=\widehat{NAO}\)  ( 2 góc tương ứng )

=> AO là phân giác của \(\widehat{BAC}\)

Hay AH là phân giác của \(\widehat{BAC}\)

c) Éo hiểu nổi cái đề bài ((( lm theo ý hiểu )

+) Xét Δ ABH và Δ ACH có

AB = AC ( cmt)

\(\widehat{MAO}=\widehat{NAO}\) ( cmt)

AH :  cạnh chung

=> Δ ABH = Δ ACH (c -g-c)

=> BH = CH ( 2 cạnh tương ứng )

Và \(\widehat{AHB}=\widehat{AHC}\) ( 2 góc tương ứng )     (1)

+) Lại có \(\widehat{AHB}+\widehat{AHC}=180^o\) ( 2 góc kề bù )      (2)

Từ (1) và (2) => \(\widehat{AHB}=\widehat{AHC}=\frac{180^o}{2}=90^o\)   (3)

Mặt khác AH cắt BC tại H  (4)

Từ (3) và (4) => \(AH\perp BC\)

~~~ Học tốt

Takigawa Miraii