Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBDI vuông tại D và ΔBFI vuông tại F có
BI chung
\(\widehat{DBI}=\widehat{FBI}\)
Do đó: ΔBDI=ΔBFI
=>ID=IF
Xét ΔCFI vuông tại F và ΔCEI vuông tại E có
CI chung
\(\widehat{FCI}=\widehat{ECI}\)
Do đó: ΔCFI=ΔCEI
=>IE=IF
b: IE=IF
ID=IF
Do đó: IE=ID
Xét ΔADI vuông tại D và ΔAEI vuông tại E có
AI chung
ID=IE
Do đó: ΔADI=ΔAEI
=>\(\widehat{DAI}=\widehat{EAI}\)
=>\(\widehat{BAI}=\widehat{CAI}\)
=>AI là phân giác của \(\widehat{BAC}\)
Xét ΔBDI vuông tại D và ΔBEI vuông tại E có
BI chung
góc DBI=góc EBI
Do đó: ΔBDI=ΔBEI
=>ID=IE
Xét ΔAEI vuông tại E và ΔAFI vuông tại F có
AI chung
góc EAI=góc FAI
Do đó: ΔAEI=ΔAFI
=>IE=IF=ID
Xét 2 TG vuông DBI và EBI, ta có:
DBI=IBE(BI là phân giác của góc B); BI:cạnh chung
=>TG DBI=TG EBI(cạnh huyền- góc nhọn)
=>ID=IE(2 cạnh tương ứng)
Xét 2 TG vuông EIC và FIC, ta có:
ECI=FCI(CI là phân giác góc C); CI:cạnh chung
=>TG EIC=TG FIC(cạnh huyền- góc nhọn)
=>IE=IF(2 cạnh tương ứng)
*Ta có: ID=IE(cmt); IE=IF(cmt)=>ID=IE=IF
Xét tam giác BDI và tam giác BEI có
IB(cạnh chung, hay là cạnh huyền)
gócB1=gócB2(gt)
gócD=gócE(=90độ)
suy ra tam giac BDI =tam giác BEI (cạnh huyền, góc nhọn)
suy ra cạnh ID=cạnh IE (2 cạnh tương ứng) (1)
Xét tam giác CEI và tam giác FIC có
IC ( cạnh chung,hay là cạnh huyền)
cạnh IE= cạnh IF(=90độ)
góc C1= góc C2( gt)
suy ra tam giác CEI = tam giác FIC(cạnh huyền, góc nhọn ) (2)
Từ đó ta suy ra ID=IE=IF(đpcm)
Từ (1) và (2) suy ra cạnh
Kẻ IF vuông góc với BC \(\left(IF\in BC\right)\)
Xét tam giác IDB và tam giác IFB ta có :
\(\widehat{BDI}=\widehat{BFI}\left(=90^o\right)\)
\(BI\): cạnh chung
\(\widehat{IBD}=\widehat{IBF}\)( theo giả thiết )
\(\Rightarrow\Delta IDB=\Delta IFB\)( cạnh huyền - góc nhọn )
\(\Rightarrow ID=IE\)( hai cạnh tương ứng ) (1)
Tương tự : \(\Delta IEC=\Delta IFC\)( cạnh huyền - góc nhọn )
\(\Rightarrow IE=IF\)( hai cạnh tương ứng ) (2)
Từ (1) và (2) => ID = IE ( đpcm )
Xét △ ABC có:
IB là tia phân giác \(\widehat{ABC}\)
IC là tia phân giác \(\widehat{ACB}\)
⇒ I là điểm đồng quy của 3 tia phân giác △ ABC
Suy ra: AI là phân giác \(\widehat{BAC}\)
Suy ra: I là tâm đường tròn nội tiếp △ ABC
R = d ( I, AB ) = d ( I, AC )
⇒ ID = IE
Xét △ ADI và △ AIE có
AI chung
\(\widehat{DAI}=\widehat{IAE}\)
ID = IE
⇒ △ADI = △AIE ( c - g - c )
⇒ AD = AE