Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: z = 1 + 2 3 + 3 i 2 = - 2 + 2 3 i
Vậy phần thực và phần ảo của z là -2 và 2 3
Chọn C
Ta có:
Suy ra z = -14 - 6i. Vậy phần thực và phần ảo của z là: -14 và - 6
Chọn D
Ta có
Suy ra w = (z + 1)(z + 2) = (i + 1)(i + 2) = -1 + 2i + i + 2 = 1 + 3i
Chọn B
Ta có: w = 2 z + z = 2 ( 1 + 2 i ) + ( 1 - 2 i ) = 3 + 2 i
Vậy phần thực của w là 3, phần ảo của w là 2
Chọn A
Ta có: (1 - i)z - 1 + 5i = 0 ⇔ (1 - i)z = 1 - 5i
Vậy phần thực và phần ảo của z là 3 và -2
Chọn A
Lời giải:
Đặt \(z=a+bi\)
Ta có: \(|z|-2\overline{z}=-7+3i+z\)
\(\Leftrightarrow \sqrt{a^2+b^2}-2(a-bi)=-7+3i+a+bi\)
\(\Leftrightarrow (\sqrt{a^2+b^2}-2a)+2bi=(-7+a)+i(b+3)\)
\(\Rightarrow \left\{\begin{matrix} \sqrt{a^2+b^2}-2a=-7+a(1)\\ 2b=b+3(2)\end{matrix}\right.\)
Từ (2) suy ra \(b=3\)
Thay vào (1): \(\sqrt{a^2+9}=3a-7\)
\(\Rightarrow (3a-7)^2=a^2+9\)
\(\Leftrightarrow 9a^2+49-42a=a^2+9\)
\(\Leftrightarrow 8a^2-42a+40=0\)
\(\Leftrightarrow a=4\) (chọn) hoặc \(a=\frac{5}{4}\) (loại do \(a\in\mathbb{Z}\) )
Vậy số phức \(z=4+3i\)
\(\Rightarrow w=1-(4+3i)+(4+3i)^2=4+21i\)
\(\Rightarrow |w|=\sqrt{4^2+21^2}=\sqrt{457}\)
Ta có z = -1 + 3i => z = - 1 - 3 i
Vậy phần thực và phần ảo của z− là -1 và -3.
Chọn đáp án B.