Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{1}{5^1}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+...+\dfrac{1}{5^{2014}}+\dfrac{1}{5^{2015}}\\ 5A=1+\dfrac{1}{5^1}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+...+\dfrac{1}{5^{2013}}+\dfrac{1}{5^{2014}}\\ 5A-A=\left(1+\dfrac{1}{5^1}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+...+\dfrac{1}{5^{2013}}+\dfrac{1}{5^{2014}}\right)-\left(\dfrac{1}{5^1}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+...+\dfrac{1}{5^{2014}}+\dfrac{1}{5^{2015}}\right)\\ 4A=1-\dfrac{1}{5^{2015}}\Rightarrow A=\dfrac{1-\dfrac{1}{5^{2015}}}{4}=\dfrac{1}{4}-\dfrac{4}{5^{2015}}< \dfrac{1}{4}\)
Ta sẽ đi chứng minh: 52015>32015+42015̣(1)52015>32015+42015̣(1)
Thật vậy, ta có:
(1)⇔(54)2015>(34)2015+1(1)⇔(54)2015>(34)2015+1
Áp dụng BĐT Bernoulli:
(54)2015=(14+1)2015>20154+1>(34)2015+1(54)2015=(14+1)2015>20154+1>(34)2015+1
Do đó ta có đpcm.
mình chỉ biết câu a thui nha thông cảm
3S+2 =22017
Vậy là chứng minh được rồi ^ ^
Mình chỉ biết làm câu a thôi còn câu b bạn tự làm nhé
a) Ta có : \(S=2+2^3+2^5+2^7+.....+2^{2015}\)
\(\Rightarrow4S=2\cdot4+2^3\cdot4+2^5\cdot4+2^7\cdot4+...+2^{2015}\cdot4\)
\(\Leftrightarrow2^3+2^5+2^7+...+2^{2015}+2^{2017}\)
Mà S = ( 4S - S) :3
\(\Rightarrow S=\left[\left(2^3+2^5+2^7+..+2^{2017}\right)-\left(2+2^3+2^5+2^7+...+2^{2015}\right)\right]:3\)
\(=\frac{\left(2^{2017}-2\right)}{3}\)
=> 3S + 2 \(=3\cdot\frac{2^{2017}-2}{3}+2\)
\(=\frac{3\left(2^{2017}-2\right)}{3}+2\)
\(=\frac{2^{2017}-2}{1}+2\)
\(=2^{2017}-2+2\)
\(=2^{2017}\)
Mà 22017 là một lũy thừ của 2
=> 3S + 2 cũng là một lũy thừ của 2 (đpcm)
\(A=\left(\frac{1}{5}\right)^1+\left(\frac{1}{5}\right)^{^2}+...+\left(\frac{1}{5}\right)^{2015}\)
\(A=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2015}}\)
\(5A=5\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2015}}\right)\)
\(5A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2014}}\)
\(\Rightarrow5A-A=\left(1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2014}}\right)-\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2015}}\right)\)
\(\Rightarrow4A=1-\frac{1}{5^{2015}}\)
\(\Rightarrow A=\frac{1-\frac{1}{5^{2015}}}{4}\)
Vì \(1-\frac{1}{5^{2015}}<1\Rightarrow A=\frac{1-\frac{1}{5^{2015}}}{4}<\frac{1}{4}\)
1853567804232223