Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\dfrac{mn^2+n^2\left(n^2-m\right)+1}{m^2n^4+2n^4+m^2+2}\)
\(A=\dfrac{mn^2+n^4-mn^2+1}{n^4\left(m^2+2\right)+m^2+2}=\dfrac{n^4+1}{\left(m^2+2\right)\left(n^4+1\right)}=\dfrac{1}{m^2+2}\)
b) CM \(\dfrac{1}{m^2+2}>0\)
ta có \(\left\{{}\begin{matrix}m^2+2>0\\1>0\end{matrix}\right.\forall m\in R\)
\(\Rightarrow\dfrac{1}{m^2+2}>0\forall m\in R\)
vậy đpcm
c) \(A=\dfrac{1}{m^2+2}=\dfrac{2}{2m^2+4}=\dfrac{m^2+2-m^2}{2m^2+4}=\dfrac{1}{2}-\dfrac{m^2}{2m^2+4}\le\dfrac{1}{2}\forall m\in R\)
dấu '=' xảy ra khi m=0
vậy \(A_{max}=\dfrac{1}{2}\) khi m=0
a)Có A=\(\left(\frac{1}{x+2}-\frac{2}{x-2}-\frac{x}{4-x^2}\right):\frac{6\left(x+2\right)}{\left(2-x\right)\left(x+1\right)}\)(ĐKXĐ \(x\ne2,-2,-1\))
=\(\left(\frac{2-x}{\left(2-x\right)\left(x+2\right)}+\frac{2\left(x+2\right)}{\left(2-x\right)\left(x+2\right)}-\frac{x}{\left(2-x\right)\left(2+x\right)}\right):\frac{6\left(x+2\right)}{\left(2-x\right)\left(x+1\right)}\)
=\(\frac{2-x+2x+4-x}{\left(2-x\right)\left(x+2\right)}.\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+2\right)}\)
=\(\frac{6\left(2-x\right)\left(x+1\right)}{6\left(2-x\right)\left(x+2\right)^2}\)
=\(\frac{x+1}{\left(x+2\right)^2}\)
b)Có A=\(\frac{x+1}{\left(x+2\right)^2}\)
Để A>0 <=> x+1>0 <=>x>-1
c) Có x2+3x+2=0
<=> x2+2x+x+2=0
<=> x(x+2)+(x+2)=0
<=>(x+1)(x+2)=0
<=> x=-1 hoặc x=-2
\(ĐKXĐ:x\ne0;x\ne\pm2\)
a) \(M=\left[\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right]:\left(x-2+\frac{10-x^2}{x+2}\right)\)
\(\Leftrightarrow M=\left[\frac{x^2}{x\left(x-2\right)\left(x+2\right)}-\frac{6}{3\left(x-2\right)}+\frac{1}{x+2}\right]:\frac{\left(x-2\right)\left(x+2\right)+10-x^2}{x+2}\)
\(\Leftrightarrow M=\frac{3x^2-6x\left(x+2\right)+3x\left(x-2\right)}{3x\left(x-2\right)\left(x+2\right)}:\frac{x^2-4+10-x^2}{x+2}\)
\(\Leftrightarrow M=\frac{3x^2-6x^2-12x+3x^2-6x}{3x\left(x-2\right)\left(x+2\right)}:\frac{6}{x+2}\)
\(\Leftrightarrow M=\frac{-18x\left(x+2\right)}{18x\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow M=-\frac{1}{x-2}\)
\(\Leftrightarrow M=\frac{1}{2-x}\)
b) Để M đạt giá trị lớn nhất
\(\Leftrightarrow2-x\)đạt giá trị nhỏ nhất
\(\Leftrightarrow x\)đạt giá trị lớn nhất
Vậy để M đạt giá trị lớn nhất thì x phải đạt giá trị lớn nhất \(\left(x\inℤ\right)\)
玉明, bạn làm sai rồi. Dấu ngoặc vuông là dấu phần nguyên không phải dấu ngoặc thường
a) \(a\ne0;a\ne1\)
\(\Leftrightarrow M=\left[\frac{\left(a-1\right)^2}{3a+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right]:\frac{a^3+4a}{4a^2}\)
\(=\left[\frac{\left(a-1\right)^2}{a^2+a+1}-\frac{1-2a^2+4a}{\left(a-1\right)\left(a^2+a+1\right)}+\frac{1}{a-1}\right]\cdot\frac{4a^2}{a\left(a^2+4\right)}\)
\(=\frac{\left(a-1\right)^3-1+2a^2-4a+a^2+a+1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\frac{4a}{a^2+4}\)
\(=\frac{a^3-1}{a^3-1}\cdot\frac{4a}{a^2+4}=\frac{4a}{a^2+4}\)
Vậy \(M=\frac{4a}{a^2+4}\left(a\ne0;a\ne1\right)\)
b) \(M=\frac{4a}{a^2+4}\left(a\ne0;a\ne1\right)\)
M>0 khi 4a>0 => a>0
Kết hợp với ĐKXĐ
Vậy M>0 khi a>0 và a\(\ne\)1
c) \(M=\frac{4a}{a^2+4}\left(a\ne0;a\ne1\right)\)
\(M=\frac{4a}{a^2+4}=\frac{\left(a^2+4\right)-\left(a^2-4a+4\right)}{a^2+4}=1-\frac{\left(a-2\right)^2}{a^2+4}\)
Vì \(\frac{\left(a-2\right)^2}{a^2+4}\ge0\forall a\)nên \(1-\frac{\left(a-2\right)^2}{a^2+4}\le1\forall a\)
Dấu "=" <=> \(\frac{\left(a-2\right)^2}{a^2+4}=0\)\(\Leftrightarrow a=2\)
Vậy \(Max_M=1\)khi a=2