Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có :
\(P\left(-1\right)=a-b+c\le\)\(P\left(1\right)=a+b+c\le P\left(2\right)=4a+2b+c\)
\(P\left(1\right)+P\left(2\right)=5a+2b+2c=0\)
\(\Rightarrow P\left(2\right)=-P\left(1\right)\)
\(\Rightarrow P\left(2\right).P\left(1\right)\le0\)
Mà \(P\left(-1\right)\le P\left(1\right)\)
\(\Rightarrow P\left(-1\right).P\left(2\right)\le0\)
Ta có: P(-1).P(-2)=[a.(-1)2+b.(-1)+c].[a.(-2)2+b.(-2)+c]
=(a-b+c).(4a-2b+c)
=[(5a-4a)-(3b-2b)+(2c-c)].(4a-2b+c)
=(5a-4a-3b+2b+2c-c).(4a-2b+c)
=[(5a-3b+2c)-(4a-2b+c)].(4a-2b+c)
Vì 5a-3b+2c=0
=>P(-1).P(-2)=[0-(4a-2b+c)].(4a-2b+c)
=-(4a-2b+c).(2a-2b+c)
=-(4a-2b+c)2
Vì \(\left(4a-2b+c\right)^2\ge0\)
=>\(-\left(4a-2b+c\right)^2\le0\)
=>\(P\left(-1\right).P\left(-2\right)\le0\)
=>ĐPCM
Ta có: P(-1) = a-b+c
P(-2) = 4a-2b+c
=> P(-1)+P(-2) = 5a-3b+2c = 0
=> P(-1) = P(2)
=> P(-1).P(-2) = P(2).P(-2) = - [P(2)]2 \(\le\)0
Vậy P(-1).P(-2) \(\le\)0
...
=> ...
=> P(-1) = - P(-2)
=> P(-1).P(-2) = - P2(-2) \(\le\)0 vì P2(-2) \(\ge\)0
=> P(-1).P(-2) \(\ge\)0
Câu trả lời này mới đúng , vừa nãy mk nhầm tưởng là nhỏ hơn hoặc bằng, sau đó mk nhìn lại đề bài nên mk sửa
\(H\left(-1\right)=a-b+c\) (1)
\(H\left(-2\right)=4a-2b+c\) (2)
Lấy (1) + (2) vế theo vế được
\(H\left(-1\right)+H\left(-2\right)=5a-3b+2c=0\)
Suy ra \(H\left(-1\right)=H\left(-2\right)=0\Rightarrow H\left(-1\right).H\left(-2\right)=0\)
Hoặc \(H\left(-1\right)\)và\(H\left(-2\right)\)có 1 số âm và một số dương
\(\Rightarrow H\left(-1\right).H\left(-2\right)<0\)
Vậy \(H\left(-1\right).H\left(-2\right)\le0\)
Ta có : f(-1) = a. (-1)2 + b(-1) + c = a - b + c
f(2) = a.22 + b.2 +c = 4a + 2b + c
Nên: f(-1) + f(2) = ( a - b + c ) + ( 4a + 2b + c )= 5a + b + 2c = 0
=> f(-1) = -f(2)
Do đó : f(-1) . f(2) =-f(2) . f(2) = -[f(2)]2 \(\le\)0
Vậy....
bạn dùng phương pháp hệ số bất định là ra mà