Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: a*c=-m^2-3<=-3<0 với mọi m
=>Phương trình luôn có hai nghiệm phân biệt
b: \(\dfrac{1}{x_1}+\dfrac{1}{x_2}=3\)
=>\(\dfrac{x_2+x_1}{x_2x_1}=3\)
=>\(\dfrac{-2}{-m^2-3}=3\)
=>\(\dfrac{2}{m^2+3}=3\)
=>m^2+3=2/3
=>m^2=2/3-3=-7/3(vô lý)
Lời giải:
Áp dụng định lý Vi-et cho pt bậc 2 ta có:
\(\left\{\begin{matrix} x_1+x_2=2(m-1)\\ x_1x_2=2m-4\end{matrix}\right.\)
Khi đó, với $m\neq 2$, ta có:
\(\frac{1}{x_1}.\frac{1}{x_2}=\frac{1}{x_2x_2}=\frac{1}{2m-4}\)
\(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{x_1x_2}=\frac{2(m-1)}{2m-4}=\frac{m-1}{m-2}\)
Từ đây áp dụng định lý Vi-et đảo, \(\frac{1}{x_1}, \frac{1}{x_2}\) sẽ là nghiệm của pt:
\(X^2-\frac{m-1}{m-2}X+\frac{1}{2m-4}=0\)
1a. Bạn tự giải
b/ \(\Delta=9-4\left(4m-1\right)=13-16m\)
Để pt có 2 nghiệm
\(\Leftrightarrow13-16m\ge0\Rightarrow m\le\frac{13}{16}\)
2.
\(\Delta'=\left(m+7\right)^2-\left(m^2-4\right)=14m+53\)
Để pt có 2 nghiệm \(\Rightarrow14m+53\ge0\Rightarrow m\ge-\frac{53}{14}\)
Theo Viet ta có: \(x_1+x_2=2\left(m+7\right)\)
\(\Rightarrow2\left(m+7\right)=10\Rightarrow m+7=5\Rightarrow m=-2\) (thỏa mãn)