K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
1 tháng 9 2020

ĐK: \(\left\{{}\begin{matrix}2x^2+2x-6>0\\2x^2-5x+4>0\\mx-5>0\end{matrix}\right.\)

Khi đó pt tương đương:

\(2log_{mx-5}\left(x^2+2x-6\right)=2log_{mx-5}\left(2x^2-5x+4\right)\)

\(\Leftrightarrow x^2+2x-6=2x^2-5x+4\)

\(\Leftrightarrow x^2-7x+10=0\Rightarrow\left[{}\begin{matrix}x=5\\x=2\end{matrix}\right.\)

Thay 2 nghiệm vào 2 điều kiện đầu đều thỏa mãn

\(\Rightarrow\) pt có nghiệm duy nhất khi và chỉ khi có đúng 1 nghiệm thỏa mãn \(mx-5>0\)

TH1: \(\left\{{}\begin{matrix}2m-5>0\\5m-5\le0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m>\frac{5}{2}\\m\le1\end{matrix}\right.\) (ko có m thỏa mãn)

TH2: \(\left\{{}\begin{matrix}5m-5>0\\2m-5\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>1\\m\le\frac{5}{2}\end{matrix}\right.\) \(\Rightarrow1< m\le\frac{5}{2}\)

24 tháng 3 2016

Điều kiện x>1

Từ (1) ta có  \(\log_{\sqrt{3}}\frac{x+1}{x-1}>\log_34\) \(\Leftrightarrow\frac{x+1}{x-1}>2\) \(\Leftrightarrow\) 1<x<3

Đặt \(t=\log_2\left(x^2-2x+5\right)\)

Tìm điều kiện của t :

- Xét hàm số \(f\left(x\right)=\log_2\left(x^2-2x+5\right)\) với mọi x thuộc (1;3)

- Đạo hàm : \(f\left(x\right)=\frac{2x-2}{\ln2\left(x^2-2x+5\right)}>\) mọi \(x\in\left(1,3\right)\)

Hàm số đồng biến nên ta có \(f\left(1\right)\) <\(f\left(x\right)\) <\(f\left(3\right)\) \(\Leftrightarrow\)2<2<3

- Ta có \(x^2-2x+5=2'\)

 \(\Leftrightarrow\) \(\left(x-1\right)^2=2'-4\)

Suy ra ứng với mõi giá trị \(t\in\left(2,3\right)\) ta luôn có 1 giá trị \(x\in\left(1,3\right)\)

Lúc đó (2) suy ra : \(t-\frac{m}{t}=5\Leftrightarrow t^2-5t=m\)

Xét hàm số : \(f\left(t\right)=t^2-5t\) với mọi \(t\in\left(2,3\right)\)

- Đạo hàm : \(f'\left(t\right)=2t-5=0\Leftrightarrow t=\frac{5}{2}\)

- Bảng biến thiên :

x2                                              \(\frac{5}{2}\)                                                    3
y'                  +                             0                       -
y

-6                                                                                                      -6

                                                -\(\frac{25}{4}\)

 

24 tháng 3 2016

Để hệ có 2 cặp nghiệm phân biệt \(\Leftrightarrow-6>-m>-\frac{25}{4}\)\(\Leftrightarrow\)\(\frac{25}{4}\) <m<6

NV
4 tháng 10 2021

Giống bài trước, \(x=3+2\sqrt{2}\) là nghiệm

\(\Rightarrow y=\dfrac{mx+1}{x-m}\Rightarrow y'=\dfrac{-m^2-1}{\left(x-m\right)^2}\) nghịch biến trên miền xác định

\(\Rightarrow\max\limits_{\left[1;2\right]}y=y\left(1\right)=\dfrac{m+1}{1-m}=-2\Rightarrow m\)

8 tháng 2 2017

Ta có : \(5^{2x}-24.5^{x-1}-1=0\Leftrightarrow5^{2x}-\frac{24}{5}.5^x-1=0\)

Đặt \(t=5^x,\left(t>0\right)\)

a)Phương trở thành : \(\Leftrightarrow t^2-\frac{24}{5}.t-1=0\left[\begin{matrix}t=5\\t=-\frac{1}{5}\left(l\right)\end{matrix}\right.\)

Với \(t=5\) ta có \(x=1\)

Vậy phương trình có nghiệm là : \(x=1\)\(x=-1\)

ĐK: \(x>1\)

b)Ta có phương trình :\(\Leftrightarrow log_{\frac{1}{2}}+log_{\frac{1}{2}}\left(x-1\right)+log_26=0\Leftrightarrow log_{\frac{1}{2}}x\left(x-1\right)+log_26=0\)

\(\Leftrightarrow log_2x\left(x-1\right)=log_26\)

\(\Leftrightarrow x\left(x-1\right)=6\Leftrightarrow\left[\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

Đôi chiếu điều kiện ta thấy phương trình có nghiệm \(x=3\)

28 tháng 8 2021

hello

28 tháng 8 2021

ban solo voi minh khong

NV
26 tháng 1 2019

1/ ĐKXĐ: \(x>0\)

\(log_{5x}5-log_{5x}x+log_5^2x=1\)

\(\Leftrightarrow\dfrac{1}{log_55x}-\dfrac{1}{log_x5x}+log_5^2x=1\)

\(\Leftrightarrow\dfrac{1}{1+log_5x}-\dfrac{1}{1+log_x5}+log_5^2x-1=0\)

\(\Leftrightarrow\dfrac{1}{1+log_5x}-\dfrac{log_5x}{1+log_5x}+\left(log_5x-1\right)\left(log_5x+1\right)=0\)

\(\Leftrightarrow\dfrac{1-log_5x}{1+log_5x}-\left(1-log_5x\right)\left(1+log_5x\right)=0\)

\(\Leftrightarrow\left(1-log_5x\right)\left(\dfrac{1}{1+log_5x}-\left(1+log_5x\right)\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}1-log_5x=0\\\dfrac{1}{1+log_5x}=1+log_5x\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}1-log_5x=0\\1+log_5x=1\\1+log_5x=-1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=1\\x=\dfrac{1}{25}\end{matrix}\right.\)

2/ ĐKXĐ: \(x>0\)

\(log_5\left(5^x-1\right).log_{25}\left(5^{x+1}-5\right)=1\)

\(\Leftrightarrow log_5\left(5^x-1\right).log_{5^2}5\left(5^x-1\right)=1\)

\(\Leftrightarrow log_5\left(5^x-1\right)\left(1+log_5\left(5^x-1\right)\right)=2\)

\(\Leftrightarrow log_5^2\left(5^x-1\right)+log_5\left(5^x-1\right)-2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}log_5\left(5^x-1\right)=1\\log_5\left(5^x-1\right)=-2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}5^x-1=5\\5^x-1=\dfrac{1}{25}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}5^x=6\\5^x=\dfrac{26}{25}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=log_56\\x=log_5\dfrac{26}{25}\end{matrix}\right.\)

3/ ĐKXĐ: \(x>0\)

\(2log_3^2x-log_3x.log_3\left(\sqrt{2x+1}-1\right)=0\)

\(\Leftrightarrow log_3x\left(2log_3x-log_3\left(\sqrt{2x+1}-1\right)\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}log_3x=0\Rightarrow x=1\\2log_3x-log_3\left(\sqrt{2x+1}-1\right)=0\left(1\right)\end{matrix}\right.\)

Xét (1): \(log_3x^2=log_3\left(\sqrt{2x+1}-1\right)\Leftrightarrow x^2=\sqrt{2x+1}-1\)

\(\Leftrightarrow x^2+1=\sqrt{2x+1}\Leftrightarrow x^4+2x^2+1=2x+1\)

\(\Leftrightarrow x^4+2x^2-2x=0\Leftrightarrow x\left(x^3+2x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(l\right)\\x^3+2x-2=0\end{matrix}\right.\) ????

Pt bậc 3 kia có nghiệm rất xấu, chỉ giải được bằng công thức Cardano mà bậc phổ thông không học, nên bạn có chép đề sai không vậy?

18 tháng 4 2016

Điều kiện \(\begin{cases}x\ne1\\x>\frac{1}{2}\end{cases}\)

\(\log_3\left(x-1\right)^2+\log_{\sqrt{3}}\left(2x-1\right)=2\Leftrightarrow2\log_3\left|x-1\right|+2\log_3\left(2x-1\right)=2\)

                                                      \(\Leftrightarrow\log_3\left|x-1\right|\left(2x-1\right)=\log_33\)

                                                       \(\Leftrightarrow\left|x-1\right|\left(2x-1\right)=3\)

                                                       \(\frac{1}{2}\)<x<1 và \(2x^2-3x+4=0\)

                                                hoặc x>1 và \(2x^2-3x-2=0\)

\(\Leftrightarrow x=2\) thỏa mãn điều kiện. Vậy x=2