Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trần Thanh PhươngNguyễn Văn ĐạtsVũ Minh TuấnvtkvtmLightning FarronNguyễn Minh TuNguyễn Thị Diễm QuỳnhấnDuong LeLê Thảo
1.
Đặt \(\sqrt{a^2+x^2}=m,\sqrt{a^2-x^2}=n\Rightarrow x^2=\frac{m^2-n^2}{2}\)
\(\frac{\sqrt{a^2+x^2}+\sqrt{a^2-x^2}}{\sqrt{a^2+x^2}-\sqrt{a^2-x^2}}-\sqrt{\frac{a^4}{x^4}-1}=\frac{\sqrt{a^2+x^2}+\sqrt{a^2-x^2}}{\sqrt{a^2+x^2}-\sqrt{a^2-x^2}}-\sqrt{\frac{(a^2+x^2)(a^2-x^2)}{x^4}}\)
\(=\frac{\sqrt{a^2+x^2}+\sqrt{a^2-x^2}}{\sqrt{a^2+x^2}-\sqrt{a^2-x^2}}-\frac{\sqrt{(a^2+x^2)(a^2-x^2)}}{x^2}\)
\(=\frac{m+n}{m-n}-\frac{mn}{\frac{m^2-n^2}{2}}=\frac{(m+n)^2}{m^2-n^2}-\frac{2mn}{m^2-n^2}=\frac{m^2+n^2}{m^2-n^2}\)
\(=\frac{2a^2}{2x^2}=\frac{a^2}{x^2}\)
2.
\(=\left[\frac{(1-\sqrt{a})(1+\sqrt{a}+a)}{1-\sqrt{a}}+\sqrt{a}\right].\left[\frac{(1+\sqrt{a})(1-\sqrt{a}+a)}{1+\sqrt{a}}-\sqrt{a}\right]\)
\(=(1+\sqrt{a}+a+\sqrt{a})(1-\sqrt{a}+a-\sqrt{a})\)
\(=(a+2\sqrt{a}+1)(a-2\sqrt{a}+1)=(\sqrt{a}+1)^2(\sqrt{a}-1)^2\)
\(=(a-1)^2\)
3.
\(=\frac{3(1-x)}{\sqrt{1+x}.\sqrt{1-x}}:\frac{3+\sqrt{1-x^2}}{\sqrt{1-x^2}}=\frac{3(1-x)}{\sqrt{1-x^2}}.\frac{\sqrt{1-x^2}}{3+\sqrt{1-x^2}}=\frac{3(1-x)}{3+\sqrt{1-x^2}}\)
4. Bạn xem lại đề xem đã đúng chưa?
5.
\(=\frac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\frac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}.\frac{\sqrt{b}(a+\sqrt{ab})+\sqrt{b}(a-\sqrt{ab})}{(a-\sqrt{ab})(a+\sqrt{ab})}\)
\(=\frac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\frac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}.\frac{2a\sqrt{b}}{a^2-ab}\)
\(=\frac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\frac{\sqrt{a}-\sqrt{b}}{\sqrt{a}}.\frac{1}{a-b}\)
\(=\frac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\frac{\sqrt{a}-\sqrt{b}}{\sqrt{a}(\sqrt{a}+\sqrt{b})(\sqrt{a}-\sqrt{b})}\)
\(=\frac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\frac{1}{a+\sqrt{ab}}=\frac{\sqrt{a}+\sqrt{b}}{a+\sqrt{ab}}=\frac{1}{\sqrt{a}}\)
sorry, câu b nhầm \(\sqrt{a}+\sqrt{b}=4\) thành \(a+b=4\)
Sửa:
Có \(\sqrt{a}+\sqrt{b}=4\Rightarrow a+b+2\sqrt{ab}=16\Leftrightarrow a+b=16-2\sqrt{ab}\)
Áp dụng BĐT cô si cho 2 số ko âm
\(a+b\ge2\sqrt{ab}\)\(\Rightarrow16-2\sqrt{ab}\ge2\sqrt{ab}\Leftrightarrow16\ge4\sqrt{ab}\)
\(\Leftrightarrow-\sqrt{ab}\ge-4\)
"="\(\Leftrightarrow a=b=4\)
a/ ĐKXĐ: a,b\(\ge\) 0, ab\(\ne\) 1
\(P=\left[\frac{\left(\sqrt{a}+1\right)\left(\sqrt{ab}-1\right)+\left(\sqrt{ab}+\sqrt{a}\right)\left(\sqrt{ab}+1\right)-ab+1}{ab-1}\right]:\left[\frac{\left(\sqrt{a}+1\right)\left(\sqrt{ab}-1\right)-\left(\sqrt{ab}+\sqrt{a}\right)\left(\sqrt{ab}+1\right)+ab-1}{ab-1}\right]\)
\(P=\left(\frac{a\sqrt{b}-\sqrt{a}+\sqrt{ab}-1+ab+\sqrt{ab}+a\sqrt{b}+\sqrt{a}-ab+1}{ab-1}\right):\left(\frac{a\sqrt{b}-\sqrt{a}+\sqrt{ab}-1-ab-\sqrt{ab}-a\sqrt{b}-\sqrt{a}+ab-1}{ab-1}\right)\)
\(P=\frac{2a\sqrt{b}+2\sqrt{ab}}{ab-1}.\frac{ab-1}{-2\sqrt{a}-2}=\frac{2\sqrt{ab}\left(\sqrt{a+1}\right)}{-2\left(\sqrt{a}+1\right)}=-\sqrt{ab}\)
b/ BĐT cô si cho 2 số ko âm
\(a+b\ge2\sqrt{ab}\Rightarrow-\left(a+b\right)\le-2\sqrt{ab}\)
\(\Leftrightarrow-4\le-2\sqrt{ab}\Leftrightarrow-\sqrt{ab}\ge-2\)
"="\(\Leftrightarrow a=b=2\)