Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ IN, DM song song với BC
suy ra IN song song vs DM
Tam giác EDM có Itrung điểm DE và IN song song vs DM
suy ra In là đương trung binh của tam giác EDM
suy ra N là trung điểm Em
ta có DM song song với BC suy ra DMCB là hình thang
Mà góc ABC =ACB
nên DMCB là hình thang cân
suy ra DB =MC
ta lại có DB=AE
suy ra MC =AE
suy ra AE+EN=CM+MN
vậy AN=NC
VẬY N là trung điểm AC
Tam giác ACK có N là trung điểm AC và IN song song với BC
suy ra IN là đường trung bình tam giác AKB
suy ra I la trung điểm AK
tứ giác ADKE có I là trung điểm DE và I trung điểm AK
nêm ADKE là hình bình hành vì có hai đường chéo cắt nhau tại trung điểm mỗi đường
Câu 1:
1. Vì $P,Q$ lần lượt là trung điểm của $AB,AC$ nên $PQ$ là đường trung bình của tam giác $ABC$ ứng với $BC$
$\Rightarrow PQ=\frac{1}{BC}=MC$ và $PQ\parallel BC$ hay $PQ\parallel MC$
Tứ giác $PQCM$ có cặp cạnh đối $PQ$ và $MC$ vừa song song vừa bằng nhau nên $PQCM$ là hình bình hành.
2.Vì tam giác $ABC$ cân tại $A$ nên đường trung tuyến $AM$ đồng thời là đường cao. Hay $AM\perp BC$
Tứ giác $NAMB$ có 2 đường chéo $MN, AB$ cắt nhau tại trung điểm $P$ của mỗi đường nên $NAMB$ là hình bình hành.
Hình bình hành $NAMB$ có 1 góc vuông ($\widehat{AMB}$) nên $NAMB$ là hình vuông.
$\Rightarrow NB\perp BM$ hay $NB\perp BC$ (đpcm)
3.
Vì $PQCM$ là hình bình hành nên $PM\parallel QC; PM=QC$. Mà $P,M,N$ thẳng hàng; $PM=PN$ nên $PN\parallel QC$ và $PN=QC$
Tứ giác $PNQC$ có cặp cạnh đối $PN, QC$ song song và bằng nhau nên $PNQC$ là hình bình hành.
Do đó $PC\parallel QN(1)$
Mà $PC\parallel QF$ (2)
Từ $(1);(2)\Rightarrow Q,N,F$ thẳng hàng (đpcm)
M thuộc ab, n thuộc ac
đồ vô dụng