K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có 

ΔADB nội tiếp

AB là đường kính

Do đó: ΔADB vuông tại D

hay \(\widehat{ADC}=180^0-90^0=90^0\)

b: Ta có: ΔADC vuông tại D

mà DI là đường trung tuyến ứng với cạnh huyền AC

nên DI=IC=IA=AC/2

Xét ΔODI và ΔOAI có

OD=OA

DI=AI

OI chung

Do đó: ΔODI=ΔOAI

Suy ra: \(\widehat{ODI}=\widehat{OAI}=90^0\)

hay ID là tiếp tuyến của (O)

13 tháng 1 2017

(Quá lực!!!)

E N A B C D O H L

Đầu tiên, hãy CM tam giác \(EAH\) và \(ABD\) đồng dạng.

Từ đó suy ra \(\frac{EA}{AB}=\frac{AH}{BD}\) hay \(\frac{EA}{OB}=\frac{AC}{BD}\).

Từ đây CM được tam giác \(EAC\) và \(OBD\) đồng dạng.

Suy ra \(\widehat{ECA}=\widehat{ODB}\). Do đó nếu gọi \(OD\) cắt \(EC\) tại \(L\) thì CM được \(OD⊥EC\).

-----

Đường tròn đường kính \(NC\) cắt \(EC\) tại \(F\) nghĩa là \(NF⊥EC\), hay \(NF\) song song với \(OD\).

Vậy \(NF\) chính là đường trung bình của tam giác \(AOD\), vậy \(NF\) qua trung điểm \(AO\) (là một điểm cố định) (đpcm)

20 tháng 6 2020

giúp mình câu c đi 

8 tháng 3 2020

cho mk cả lời giải của các phần trên đc ko mèo con dễ thương

8 tháng 3 2020

mk cần gấp