K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2016

Ta có : \(5=1\) ( mod 4 ) 

 => \(5^n=1\)( mod 4 ) 

\(\Rightarrow5^n-1=0\)( mod 4 )

\(\Rightarrow5^n-1\)chia hết cho 4

\(\leftrightarrowđpcm\)

15 tháng 6 2016

Ta có : 5 mũ n có cơ số là 5 

=> 5 mũ n tận cùng là 25 (với n >1)

+, n = 0

=> 5 mũ n - 1 = 1 - 1 = 0 chia hết cho 4

+, n =1

=> 5 mũ n - 1 = 5 - 1 = 4 chia hết cho 4

+, n > 1

=> 5 mũ n - 1 =  số có tận cùng là 25 - 1 = số có tận cùng là 24 chia hết cho 4 ( vì 24 chia hết cho 4)

=> đpcm

17 tháng 8 2020

Bài 2:

a) \(\left(n^2+3n-1\right)\left(n+2\right)-n^3-2\)

\(=n^3+3n^2-n+2n^2+6n-2-n^3-2\)

\(=5n^2+5n-4\)

Mà 5n2 + 5n chia hết cho 5 mà 4 không chia hết cho 5

=> \(5n^2+5n-4\) không chia hết cho 5

=> điều cần cm sai

17 tháng 8 2020

Bài 2:

b) \(\left(n-1\right)\left(n+4\right)-\left(n-4\right)\left(n+1\right)\)

\(=n^2+3n-4-n^2+3n+4\)

\(=6n\) luôn chia hết cho 6 với mọi số nguyên n

=> đpcm

25 tháng 12 2016
với : n =0 thì 5^0 -1 = 0 chia hết cho 4 với ; n = 1 thì 5^1 -1 = 4 chia hết cho 4 với n > 2 hoặc n =2 thì 5^n có tận cùng là 25. suy ra : 5^n có tận cùng là 24 chia hết cho 4 vậy 5^n -1 chia hết cho 4
14 tháng 12 2018

Ta thấy :5 chia hết cho 5 suy ra 5 mũ n chia hết cho 5

Mà 5=4+1

Suy ra 5 mũ n chia hết cho 4+1

Suy ra (5 mũ n) -1 chia hết cho 4

Vậy (5 mũ n)-1 chia hết cho 4.

11 tháng 7 2018

a) Gọi 5 số tự nhiên đó là a; a+1; a+2; a+3;a+4

Tổng 5 số đó là a + a+1 + a+2 + a+3 + a+4

= (a+a+a+a+a) + (1+2+3+4)

= 5a + 10

= 5(a+2) chia hết cho 5

Vậy tổng của 5 số tự nhiên chia hết cho 5

15 tháng 1 2018

Bài 1:

Xét hiệu: 6(x+7y) - 6x+11y = 6x+42y-6x+11y = 31y 

Vì 6x+11y chia hết cho 31, 31y chia hết cho 31

=> 6(x+7y) chia hết cho 31

Mà (6;31)=1 => x+7y chia hết cho 31

Bài 3:

a,n2+3n-13 chia hết cho n+3

=>n(n+3)-13 chia hết cho n+3

=>13 chia hết cho n+3

=>n+3 E Ư(13)={1;-1;13;-13}

=>n E {-2;-4;10;-16}

d,n2+3 chia hết cho n-1

=>n2-n+n-1+4 chia hết cho n-1

=>n(n-1)+(n-1)+4 chia hết cho n-1

=>4 chia hết cho n-1

=>n-1 E Ư(4)={1;-1;2;-2;4;-4}

=>n E {2;0;3;-1;5;-3}

15 tháng 1 2018

Bài 1

Vì 6x+11y chia hết cho 31

=> 6x+11y+31y chia hết cho 31 (31y chia hết cho 31)

=> 6x+42y chia hết cho 31

=> 6(x+7y) chia hết cho 31

Mà (6;31)=1 nên x+7y chia hết cho 31 (đpcm)

15 tháng 1 2018

Bài 3

n 2 + 3n - 13 chia hết cho n + 3

=>n(n+3)-13 chia hết cho n+3

=>13 chia hết cho n+3

=>n+3 thuộc Ư(13)={-1;1;-13;13}

=>n thuộc{-4;-2;-16;10}

n 2 + 3 chia hết cho n - 1

ta có: n-1 chia hết cho n-1

=>(n-1)(n+1) chia hết cho n-1

=>n^2+n-n-1 chia hết cho n-1

=>n^2-1 chia hết cho n-1 mà n2 + 3 chia hết cho n - 1

=>(n^2+3)-(n^2-1) chia hết cho n-1

=>4 chia hết cho n-1

=>n-1 thuộc Ư(4)={-1;1;-2;2;-4;4}

=> n thuộc {0;2;-1;3;-3

31 tháng 5 2016

Để n+ 2n3 - n2 - 2n chia hết cho 24 thì phải chia hết cho 4 và 6

Ta có \(n^4+2n^3-n^2-2n=n^2\left(n^2-1\right)+2n\left(n^2-1\right)\)

\(=\left(n^2-1\right)\left(n^2+2\right)=\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)

Biểu thức trên có tích là 4 số nguyên liên tiếp nên sẽ chia hết cho 4

Để biểu thức chia hết cho 6 thì phải chia hết cho 2 và 3.Biểu thức trên là tích của 4 số nguyên liên tiếp nên sẽ chia hết cho 2 va cũng có ít nhất 1 số chia hết cho 3 nên sẽ chia hết cho 6

Vậy biểu thức chia hết cho 24

22 tháng 3 2023

Để n4 + 2n3 - n2 - 2n chia hết cho 24 thì phải chia hết cho 4 và 6

 

Ta có 

4

+

2

3

2

2

=

2

(

2

1

)

+

2

(

2

1

)

4

 +2n 

3

 −n 

2

 −2n=n 

2

 (n 

2

 −1)+2n(n 

2

 −1)

 

=

(

2

1

)

(

2

+

2

)

=

(

1

)

(

+

1

)

(

+

2

)

=(n 

2

 −1)(n 

2

 +2)=(n−1)n(n+1)(n+2)

 

Biểu thức trên có tích là 4 số nguyên liên tiếp nên sẽ chia hết cho 4

 

Để biểu thức chia hết cho 6 thì phải chia hết cho 2 và 3.Biểu thức trên là tích của 4 số nguyên liên tiếp nên sẽ chia hết cho 2 va cũng có ít nhất 1 số chia hết cho 3 nên sẽ chia hết cho 6

 

Vậy biểu thức chia hết cho 24

 

 Đúng ko nek