K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2017

Do UCLN(n,6) = 1 nên n không chia hết cho 2 và 3.

n không chia hết cho 2 nên n phải là số lẻ, n không chia hết cho 3 nên n chỉ có thể có dạng 3k + 1 hoặc 3k + 2

Nếu n = 3k + 1 thì k phải là số chẵn. Đặt k = 2j, ta có n = 3.2j + 1 = 6j + 1

Khi đó \(n^2-1=\left(6j+1\right)^2-1=36j^2+12j=12j\left(3j+1\right)\)

Nếu j chẵn, \(j=2t\Rightarrow n^2-1=12.2t\left(6t+1\right)=24t\left(6t+1\right)⋮24\)

Nếu j lẻ, \(j=2t+1\Rightarrow n^2-1=12.\left(2t+1\right)\left(6t+4\right)=24\left(2t+1\right)\left(3t+2\right)⋮24\)

Vậy \(n^2-1⋮24\)

Nếu \(n=3k+2\) thì k là số lẻ. Đặt \(k=2j+1\Rightarrow n=3\left(2j+1\right)+2=6j+5\)

\(n^2-1=\left(6j+5\right)^2-1=36j^2+60j+24=12j\left(3j+5\right)+24\)

Nếu j chẵn, \(j=2t\Rightarrow n^2-1=12.2t\left(6t+5\right)=24t\left(6t+5\right)⋮24\)

Nếu j lẻ, \(j=2t+1\Rightarrow n^2-1=12.\left(2t+1\right)\left(6t+8\right)=24\left(2t+1\right)\left(3t+4\right)⋮24\)

Vậy \(n^2-1⋮24\)

Tóm lại , khi UCLN(n ; 6) = 1 thì \(n^2-1⋮6\)

27 tháng 11 2016

1) Giải

Vì n thuộc N và n > 1

Ta có : n3 - 61n = n3 - n - 60n = ( n3 - n ) - 60n

Ta có : n3 - n = n2.n - 1.n = n(n2 - 1) = n(n-1)n(n+1)

=> n3 - n = ( n + 1 )n( n - 1 ) : hết cho 6 với mọi n thuộc N và n > 1 thì ( n - 1 )n(n + 1 ) là tích của ba số tự nhiên liên tiếp

Ta có ; 60n : hết cho 6 với mọi n thuộc N và n > 1

Do đó ( n3 - n ) - 60n : hết cho 6 với mọi n thuộc N và n > 1

Vậy với n thuộc N và n > 1 thì n3 - 61n : hết cho 6

2) Giải

Ta có : n( n + 2 ) ( 25n2 - 1 )

=> n( n + 2 ) ( n2 + 24n2 - 1 )

=> n( n + 2 ) [ ( n2 - 1 ) + 24n2 ]

=> n( n + 2 ) ( n2 - 1 ) + n( n + 2 ) . 24n2

=> ( n -1 )n( n + 1 ) ( n + 2 ) + n( n + 2 ) . 24n2 (1)

Ta có : n( n + 2 ) . 24n2 : hết cho 24 mọi n

vì n thuộc N , n > 1 nên ( n - 1 )n( n + 1 ) ( n + 2 ) là tích của bốn số tự nhiên liên tiếp

=> ( n - 1 )n( n + 1 ) ( n + 2 ) : hết cho 8 và chi hết cho 3

ta có 8.3 = 24 và U7CLN( 8 ; 3 ) = 1 (2)

Do đó ( n - 1 ) n ( n + 1 ) ( n + 2 ) : hết cho 24 (3)

Từ (1) ; (2) và (3) => n( n + 2 ) ( 25n2 - 1 : hết cho 24 với mọi n thuộc N và n > 1

Vậy với mọi n thuộc N và n > 1 thì n ( n + 2 ) ( 25n2 - 1 ) : hết cho 24

 

Đặt n = 2k , ta có                      ( đk k >= 1 do n là một số chẵn lớn hơn 4)

\(\left(2k\right)^4-4\times\left(2k\right)^3-4\times\left(2k\right)^2+16\times2k\)

\(=16k^4-32k^3-16k^2+32k\)

\(=16k^2\left(k^2-1\right)-32k\left(k^2-1\right)\)

\(=16k\times k\left(k-1\right)\left(k+1\right)-32\times k\left(k-1\right)\left(k+1\right)\)

Nhận xét \(\left(k-1\right)k\left(k+1\right)\)  là 3 số tự nhiên liên tiếp nên 

\(\left(k-1\right)k\left(k+1\right)\) chia hết cho 3

Suy ra điều cần chứng minh

23 tháng 11 2016

câu 1:

a, giả sử 2 số chẵn liên tiếp là 2k và (2k+2) ta có:

2k(2k+2) = 4k2+4k = 4k(k+1) chia hết cho 8 vì 4k chia hết cho 4, k(k+1) chia hết cho 2

b, giả sử 3 số nguyên liên tiếp là a,a+1,a+2 với mọi a thuộc Z

  • a,a+1,a+2 là 3 số nguyên liên tiếp nên tồn tại duy nhất một số chẵn hoặc có 2 số chẵn nên tích của chúng sẽ chia hết cho 2.

mặt khác vì là 3 số tự nhiên liên tiếp nên sẽ chia hết cho 3.

vậy tích của 3 số nguyên liên tiếp chia hết cho 6.

c, giả sử 5 số nguyên liên tiếp là a,a+1,a+2, a+3,a+4 với mọi a thuộc Z

  • vì là 5 số nguyên liên tiếp nên sẽ tồn tại 2 số chẵn liên tiếp nên theo ý a tích của chúng choa hết cho 8.
  • tích của 3 số nguyên liên tiếp chia hết cho 3.
  • tích của 5 số nguyên liên tiếp chia hết cho 5.

vậy tích của 5 số nguyên liên tiếp chia hết cho 120.

câu 2:

a, a3 + 11a = a[(a- 1)+12] = (a - 1)a(a+1) + 12a

  • (a - 1)a(a+1) chia hết cho 6 ( theo ý b câu 1)
  • 12a chia hết cho 6.

vậy a3 + 11a chia hết cho 6.

b, ta có a- a = a(a2 - 1) = (a-1)a(a+1) chia hết cho 3 (1) 

mn(m2-n2) = m3n - mn3 = m3n - mn + mn - mn3 = n( m- m) - m(n3 -n)

theo (1) mn(m2-n2) chia hết cho 3.

c, ta có: a(a+1)(2a+10 = a(a+1)(a -1+ a +2) = [a(a+1)(a - 1) + a(a+1)(a+2)] chia hết cho 6.( théo ý b bài 1)