Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: \(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{19}+\frac{1}{20}>\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}+\frac{1}{20}\)( Có 10 phân số 1/20)
\(=\frac{10}{20}=\frac{1}{2}\)
\(\Rightarrow A=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{19}+\frac{1}{20}>\frac{1}{2}\)
Chúc bn học tốt !!!!
1/11 + 1/12+ 1/13 +...+ 1/19 + 1/20 > 1/20 + 1/20 + 1/20 + ... + 1/20
= 10/20 = 1/2
Vậy A > 1/2.
Ta có 1/20 + 1/20 + 1/20 + ... + 1/20 + 1/20 < 1/11 + 1/12 + 1/13 + ... + 1/19 + 1/20 < 1/10 + 1/10 + 1/10 + ... + 1/10 + 1/10 = 10/20 < S < 10/10 \(\Rightarrow\)1/2 < S < 1 ( đpcm )
Ta có : 1/11+1/12+1/13+...+1/19+1/20 > 1/20+1/20+1/20+...+1/20+1/20 =10/20=1/2
có tất cả 10 phân số 1/20
=> S > 1/2
1/11+1/12+1/13+...+1/19+1/20 < 1/10+1/10+1/10+...+1/10+1/10 =10/10=1
có tất cả 10 phân số /10
=> S<1
=> 1/2 < S <1
Xét: 1-1/2+1/3-1/4+...+1/19-1/20 = (1+1/3+1/5+...1/19) - (1/2+1/4+1/6+...+1/20)
= (1+ 1/2+1/3+...+1/20) - 2.(1/2+1/4+...+1/20)
= (1+1/2+1/3+...+1/20) - (1+1/2+...+1/10)
= 1/11+1/12+1/13+...+1/20 (dpcm)
Vậy, 1-1.2+1/3-1/4+...+1/19-1/20=1/11+1/12+1/13+...+1/20
a) ta có công thức \(\frac{a}{n.\left(n+a\right)}=\frac{1}{n}-\frac{1}{n+a}\)
ta có \(N=\frac{5^2}{5.10}+\frac{5^2}{10.15}+...+\frac{5^2}{2005.2010}\)
\(N=5\left(\frac{5}{5.10}+\frac{5}{10.15}+...+\frac{5}{2005.2010}\right)\)
\(N=5\left(\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+...+\frac{1}{2005}-\frac{1}{2010}\right)\)(sử dụng quy tắc dấu ngoặc)
\(N=5\left[\frac{1}{5}-\left(\frac{1}{10}-\frac{1}{10}\right)-\left(\frac{1}{15}-\frac{1}{15}\right)-...-\left(\frac{1}{2005}-\frac{1}{2005}\right)-\frac{1}{2010}\right]\)
\(N=5\left[\frac{1}{5}-0-0-...-0-\frac{1}{2010}\right]\)
\(N=5\left[\frac{1}{5}-\frac{1}{2010}\right]\)
\(N=5.\frac{401}{2010}\)
\(N=\frac{401}{402}\)
b) \(M=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{20}\)
ta thấy \(\frac{1}{11}=\frac{1}{11}\)
\(\frac{1}{12}<\frac{1}{11}\)
\(\frac{1}{13}<\frac{1}{11}\)
.................
\(\frac{1}{20}<\frac{1}{11}\)
\(\Rightarrow M=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{20}<\frac{1}{11}+\frac{1}{11}+...+\frac{1}{11}\)(có 10 phân số \(\frac{1}{11}\))
\(\Rightarrow\frac{1+1+1...+1}{11}\)
\(=\frac{10}{11}\)
ta có \(\frac{10}{11}=\frac{4020}{4422}\)(1)
\(\frac{401}{402}=\frac{4411}{4422}\)(2)
từ (1)và (2)\(\Rightarrow\frac{4020}{4422}<\frac{4411}{4422}\Leftrightarrow\frac{10}{11}<\frac{401}{402}\)
Vì \(M<\frac{10}{11}<\frac{401}{402}=N\left(3\right)\)
Từ \(\left(3\right)\Leftrightarrow M
Ta thấy mỗi số hạng của tổng đều bé hơn 1/10
=>S<\(\frac{1}{10}.10=1\)
=>S<1
S = 1/11 + 1/12 + 1/13 + 1/14 + 1/15 + 1/16 + 1/17 + 1/18 + 1/19 + 1/20
S < 1/10 + 1/10 + 1/10 + 1/10 + 1/10 + 1/10 + 1/10 + 1/10 + 1/10 + 1/10
S < 10 × 1/10
S < 1
Yêu cầu đề bài là gì vậy bạn?