K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2016

Ta có \(L_m=\lim\limits_{x\rightarrow1}\left(\frac{m-\left(1+x+x^2+.....+x^{m-1}\right)}{1-x^m}\right)\)

               \(=\lim\limits_{x\rightarrow1}\frac{\left(1-x\right)+\left(1-x^2\right)+.....+\left(1-x^{m-1}\right)}{1-x^m}\)

               \(=\lim\limits_{x\rightarrow1}\frac{\left(1-x\right)\left[1+\left(1+x\right)+.....+\left(1+x+x^2+.....+x^{m-2}\right)\right]}{\left(1-x\right)\left(1+x+x^2+.....+x^{m-1}\right)}\)

               \(=\frac{1+2+3+....+\left(m-1\right)}{m}=\frac{\left(m-1\right)m}{2m}=\frac{m-1}{2}\)

4 tháng 5 2016

Ta có \(\frac{x^n-nx+n-1}{\left(x-1\right)^2}=\frac{\left(x^n-1\right)-n\left(x-1\right)}{\left(x-1\right)^2}\)

                            \(=\frac{\left(x-1\right)\left(x^{n-1}+x^{n-1}+....+x+1-n\right)}{\left(x-1\right)^2}\)  (1)

Từ (1) suy ra :

      \(L=\lim\limits_{x\rightarrow1}\frac{x^{n-1}+x^{n-2}+.....+x-\left(n-1\right)}{x-1}\) (2)

     \(L=\lim\limits_{x\rightarrow1}\frac{\left(x^{n-1}-1\right)+\left(x^{n-2}-1\right)+.....+\left(x-1\right)}{x-1}\)

         \(=\lim\limits_{x\rightarrow1}\frac{\left(x-1\right)\left[\left(x^{n-1}+x^{n-3}+.....+x+1\right)+.....+\left(x+1\right)+1\right]}{x-1}\)

         \(=\lim\limits_{x\rightarrow1}\left[1+\left(x+1\right)+....+\left(x^{n-2}+x^{n-3}+.....+x+1\right)\right]\)

          \(=1+2+....+\left(n-1\right)=\frac{n\left(n-1\right)}{2}\)

4 tháng 5 2016

Áp dụng công thức khai triển nhị thức Newton, ta có :

\(\left(1+mx\right)^n=1+C_n^1\left(mx\right)+C_n^2\left(mx\right)^2+.....C_n^n\left(mx\right)^n\)

\(\left(1+nx\right)^m=1+C_m^1\left(nx\right)+C_m^2\left(nx\right)+....+C_m^m\left(nx\right)^m\)

Mặt khác ta có : \(C_n^1\left(mx\right)=C_n^1\left(nx\right)=mnx\)

\(C_n^2\left(mx\right)^2=\frac{n\left(n-1\right)}{2}m^2x^2;C_m^2\left(nx\right)^2=\frac{m\left(m-1\right)}{2}n^2x^2;\)

Từ đó ta có :

\(L=\lim\limits_{x\rightarrow0}\frac{\left[\frac{n\left(n-1\right)}{2}m^2-\frac{m\left(m-1\right)}{2}n^2\right]x^2+\alpha_3x^3+\alpha_4x^4+....+\alpha_kx^k}{x^2}\left(2\right)\)

Từ (2) ta có : \(L=\lim\limits_{x\rightarrow0}\left[\frac{mn\left(n-m\right)}{2}+\alpha_3x+\alpha_4x^2+....+\alpha_kx^{k-2}\right]=\frac{mn\left(n-m\right)}{2}\)

AH
Akai Haruma
Giáo viên
12 tháng 3 2020

a.

\(\lim\limits_{x\to 1+}\frac{2x^4-5x^3+3x^2+1}{3x^4-8x^3+6x^2-1}=\lim_{x\to 1+}\frac{2x^4-5x^3+3x^2+1}{(x-1)^3(3x+1)}=\lim\limits _{x\to 1+}\frac{2x^4-5x^3+3x^2+1}{3x+1}.\lim\limits_{x\to 1+}\frac{1}{(x-1)^3}\)

\(=\frac{1}{4}.(+\infty)=+\infty \)

Hoàn toàn tương tự:

\(\lim\limits_{x\to 1-}\frac{2x^4-5x^3+3x^2+1}{3x^4-8x^3+6x^2-1}=-\infty \)

Do đó: \(\lim\limits_{x\to 1+}\frac{2x^4-5x^3+3x^2+1}{3x^4-8x^3+6x^2-1}\neq \lim\limits_{x\to 1-}\frac{2x^4-5x^3+3x^2+1}{3x^4-8x^3+6x^2-1}\) nên không tồn tại \(\lim\limits_{x\to 1}\frac{2x^4-5x^3+3x^2+1}{3x^4-8x^3+6x^2-1}\)

AH
Akai Haruma
Giáo viên
12 tháng 3 2020

b.

\(\lim\limits_{x\to 1+}\frac{x^3-3x^2+2}{x^4-4x+3}=\lim\limits_{x\to 1+}\frac{(x-1)(x^2-2x-2)}{(x-1)^2(x^2+2x+3)}=\lim\limits_{x\to 1+}\frac{x^2-2x-2}{(x-1)(x^2+2x+3)}\)

\(=\lim\limits_{x\to 1+}\frac{x^2-2x-2}{x^2+2x+3}.\lim\limits_{x\to 1+}\frac{1}{x-1}=\frac{-1}{2}.(+\infty)=-\infty \)

Tương tự \(\lim\limits_{x\to 1-}\frac{x^3-3x^2+2}{x^4-4x+3}=+\infty \)

Do đó không tồn tại \(\lim\limits_{x\to 1}\frac{x^3-3x^2+2}{x^4-4x+3}\)

c.

\(\lim\limits_{x\to 1}\frac{x^3-2x-1}{x^5-2x-1}=\frac{1^3-2.1-1}{1^5-2.1-1}=1\)

d.

\(\lim\limits_{x\to -1}\frac{(x+2)^2-1}{x^2-1}=\lim\limits_{x\to -1}\frac{(x+2-1)(x+2+1)}{(x-1)(x+1)}=\lim\limits_{x\to -1}\frac{x+3}{x-1}=-1\)

AH
Akai Haruma
Giáo viên
4 tháng 4 2020

Lời giải:
\(A=\lim\limits _{x\to 1}\frac{(\sqrt[3]{x}-1)^2}{[(\sqrt[3]{x}-1)(\sqrt[3]{x^2}+\sqrt[3]{x}+1)]^2}=\lim\limits _{x\to 1}\frac{1}{(\sqrt[3]{x^2}+\sqrt[3]{x}+1)^2}=\frac{1}{(1+1+1)^2}=\frac{1}{9}\)

AH
Akai Haruma
Giáo viên
25 tháng 1 2020

Lời giải:
a)

\(\lim\limits_{x\to-1}\frac{\sqrt[3]{x}+1}{2x^2+5x+3}=\lim\limits_{x\to-1}\frac{x+1}{\left(\sqrt[3]{x^2}-\sqrt[3]{x}+1\right)\left(x+1\right)\left(2x+3\right)}\)

\(\lim\limits_{x\to-1}\frac{1}{\left(\sqrt[3]{x^2}-\sqrt[3]{x}+1\right)\left(2x+3\right)}=\frac{1}{\left(\sqrt[3]{\left(-1\right)^2}-\sqrt[3]{-1}+1\right)\left(2.-1+3\right)}=\frac{1}{3}\)

b)

\(\lim\limits_{x\to1}\frac{\sqrt[3]{x^2}-2\sqrt[3]{x}+1}{\left(x-1\right)^2}=\lim\limits_{x\to1}\frac{\left(\sqrt[3]{x}-1\right)^2}{\left(x-1\right)^2}=\lim\limits_{x\to1}\frac{\left(x-1\right)^2}{\left(\sqrt[3]{x^2}+\sqrt[3]{x}+1\right)^2\left(x-1\right)^2}\)

\(=\lim\limits_{x\to1}\frac{1}{\left(\sqrt[3]{x^2}+\sqrt[3]{x}+1\right)^2}=\frac{1}{\left(1+1+1\right)^2}=\frac{1}{9}\)

c)

\(\lim_{x\to 1}\frac{\sqrt[4]{x}-1}{x^3+x^2-2}=\lim_{x\to 1}\frac{\sqrt[4]{x}-1}{(x-1)(x^2+2x+2)}=\lim_{x\to 1}\frac{x-1}{(\sqrt{x}+1)(\sqrt[4]{x}+1)(x-1)(x^2+2x+2)}\)

\(=\lim_{x\to 1}\frac{1}{(\sqrt{x}+1)(\sqrt[4]{x}+1)(x^2+2x+2)}=\frac{1}{(1+1)(1+1)(1+2.1+2)}=\frac{1}{20}\)

d)

\(\lim_{x\to -2}\frac{\sqrt[3]{2x+12}+x}{x^2+2x}=\lim_{x\to -2}\frac{2x+12+x^3}{(\sqrt[3]{(2x+12)^2}-x\sqrt[3]{2x+12}+x^2).x(x+2)}\)

\(=\lim_{x\to -2}\frac{(x+2)(x^2-2x+6)}{(\sqrt[3]{(2x+12)^2}-x\sqrt[3]{2x+12}+x^2).x(x+2)}=\lim_{x\to -2}\frac{x^2-2x+6}{(\sqrt[3]{(2x+12)^2}-x\sqrt[3]{2x+12}+x^2).x}\)

\(=\frac{-7}{12}\)

AH
Akai Haruma
Giáo viên
7 tháng 1 2020

Lời giải:
a)

\(\lim\limits_{x\to-1}\frac{\sqrt[3]{x}+1}{2x^2+5x+3}=\lim\limits_{x\to-1}\frac{x+1}{\left(\sqrt[3]{x^2}-\sqrt[3]{x}+1\right)\left(x+1\right)\left(2x+3\right)}\)

\(\lim\limits_{x\to-1}\frac{1}{\left(\sqrt[3]{x^2}-\sqrt[3]{x}+1\right)\left(2x+3\right)}=\frac{1}{\left(\sqrt[3]{\left(-1\right)^2}-\sqrt[3]{-1}+1\right)\left(2.-1+3\right)}=\frac{1}{3}\)

b)

\(\lim\limits_{x\to1}\frac{\sqrt[3]{x^2}-2\sqrt[3]{x}+1}{\left(x-1\right)^2}=\lim\limits_{x\to1}\frac{\left(\sqrt[3]{x}-1\right)^2}{\left(x-1\right)^2}=\lim\limits_{x\to1}\frac{\left(x-1\right)^2}{\left(\sqrt[3]{x^2}+\sqrt[3]{x}+1\right)^2\left(x-1\right)^2}\)

\(=\lim\limits_{x\to1}\frac{1}{\left(\sqrt[3]{x^2}+\sqrt[3]{x}+1\right)^2}=\frac{1}{\left(1+1+1\right)^2}=\frac{1}{9}\)

c)

\(\lim_{x\to 1}\frac{\sqrt[4]{x}-1}{x^3+x^2-2}=\lim_{x\to 1}\frac{\sqrt[4]{x}-1}{(x-1)(x^2+2x+2)}=\lim_{x\to 1}\frac{x-1}{(\sqrt{x}+1)(\sqrt[4]{x}+1)(x-1)(x^2+2x+2)}\)

\(=\lim_{x\to 1}\frac{1}{(\sqrt{x}+1)(\sqrt[4]{x}+1)(x^2+2x+2)}=\frac{1}{(1+1)(1+1)(1+2.1+2)}=\frac{1}{20}\)

d)

\(\lim_{x\to -2}\frac{\sqrt[3]{2x+12}+x}{x^2+2x}=\lim_{x\to -2}\frac{2x+12+x^3}{(\sqrt[3]{(2x+12)^2}-x\sqrt[3]{2x+12}+x^2).x(x+2)}\)

\(=\lim_{x\to -2}\frac{(x+2)(x^2-2x+6)}{(\sqrt[3]{(2x+12)^2}-x\sqrt[3]{2x+12}+x^2).x(x+2)}=\lim_{x\to -2}\frac{x^2-2x+6}{(\sqrt[3]{(2x+12)^2}-x\sqrt[3]{2x+12}+x^2).x}\)

\(=\frac{-7}{12}\)

NV
1 tháng 3 2020

\(a=\lim\limits_{x\rightarrow1}\frac{\left(x-1\right)\left(x+1\right)\left(x^2+1\right)}{\left(x-1\right)\left(x^2+x-1\right)}=\lim\limits_{x\rightarrow1}\frac{\left(x+1\right)\left(x^2+1\right)}{x^2+x-1}=\frac{4}{1}=4\)

\(b=\lim\limits_{x\rightarrow-1}\frac{\left(x+1\right)\left(x^4-x^3+x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}=\lim\limits_{x\rightarrow-1}\frac{x^4-x^3+x^2-x+1}{x^2-x+1}=\frac{5}{3}\)

\(c=\lim\limits_{x\rightarrow3}\frac{\left(x+1\right)\left(x-3\right)^2}{\left(x^2+1\right)\left(x^2-9\right)}=\lim\limits_{x\rightarrow3}\frac{\left(x+1\right)\left(x-3\right)}{\left(x^2+1\right)\left(x+3\right)}=\frac{0}{60}=0\)

\(d=\lim\limits_{x\rightarrow1}\frac{4x^6-5x^5+x}{x^2-2x+1}=\lim\limits_{x\rightarrow1}\frac{24x^5-25x^4+1}{2x-2}=\lim\limits_{x\rightarrow1}\frac{120x^4-100x^3}{2}=10\)

\(e=\lim\limits_{x\rightarrow1}\frac{mx^{m-1}}{nx^{n-1}}=\frac{m}{n}\)

\(f=\lim\limits_{x\rightarrow-2}\frac{\left(x+2\right)\left(x-2\right)\left(x^2+4\right)}{\left(x+2\right)x^2}=\lim\limits_{x\rightarrow-2}\frac{\left(x-2\right)\left(x^2+4\right)}{x^2}=-8\)

Hai câu d, e khai triển thì dài quá nên làm biếng sử dụng L'Hopital

NV
15 tháng 3 2020

\(a=\lim\limits_{x\rightarrow a}\frac{\left(\sqrt{x}-\sqrt{a}\right)\left(x+\sqrt{ax}+a\right)}{\sqrt{x}-\sqrt{a}}=\lim\limits_{x\rightarrow a}\left(x+\sqrt{ax}+a\right)=3a\)

\(b=\lim\limits_{x\rightarrow1}\frac{x^{\frac{1}{n}}-1}{x^{\frac{1}{m}}-1}=\lim\limits_{x\rightarrow1}\frac{\frac{1}{n}x^{\frac{1-n}{n}}}{\frac{1}{m}x^{\frac{1-m}{m}}}=\frac{\frac{1}{n}}{\frac{1}{m}}=\frac{m}{n}\)

Ta có:

\(\lim\limits_{x\rightarrow1}\frac{1-\sqrt[n]{x}}{1-x}=\lim\limits_{x\rightarrow1}\frac{1-x^{\frac{1}{n}}}{1-x}=\lim\limits_{x\rightarrow1}\frac{-\frac{1}{n}x^{\frac{1-n}{n}}}{-1}=\frac{1}{n}\)

\(\Rightarrow c=\lim\limits_{x\rightarrow1}\frac{\left(1-\sqrt{x}\right)}{1-x}.\frac{\left(1-\sqrt[3]{x}\right)}{\left(1-x\right)}.\frac{\left(1-\sqrt[4]{x}\right)}{\left(1-x\right)}.\frac{\left(1-\sqrt[5]{x}\right)}{\left(1-x\right)}=\frac{1}{2}.\frac{1}{3}.\frac{1}{4}.\frac{1}{5}=\frac{1}{120}\)

\(d=\lim\limits_{x\rightarrow+\infty}\frac{\sqrt{x+\sqrt{x}}}{\sqrt{x+\sqrt{x+\sqrt{x}}}+\sqrt{x}}=\lim\limits_{x\rightarrow+\infty}\frac{\sqrt{1+\frac{1}{\sqrt{x}}}}{\sqrt{1+\sqrt{\frac{1}{x}+\frac{1}{x\sqrt{x}}}}+1}=\frac{1}{2}\)

NV
15 tháng 3 2020

\(e=\lim\limits_{x\rightarrow0}\frac{\sqrt{1+x}-1+1-\sqrt[3]{1+x}}{x}=\lim\limits_{x\rightarrow0}\frac{\frac{x}{\sqrt{1+x}+1}+\frac{x}{1+\sqrt[3]{1+x}+\sqrt[3]{\left(1+x\right)^2}}}{x}\)

\(=\lim\limits_{x\rightarrow0}\left(\frac{1}{\sqrt{1+x}+1}+\frac{1}{1+\sqrt[3]{1+x}+\sqrt[3]{\left(1+x\right)^2}}\right)=\frac{1}{2}+\frac{1}{3}=\frac{5}{6}\)

\(f=\lim\limits_{x\rightarrow2}\frac{\sqrt[3]{8x+11}-3+3-\sqrt{x+7}}{\left(x-1\right)\left(x-2\right)}=\lim\limits_{x\rightarrow2}\frac{\frac{8\left(x-2\right)}{\sqrt[3]{\left(8x+11\right)^2}+3\sqrt[3]{8x+11}+9}-\frac{x-2}{3+\sqrt{x+7}}}{\left(x-1\right)\left(x-2\right)}\)

\(=\lim\limits_{x\rightarrow2}\frac{\frac{8}{\sqrt[3]{\left(8x+11\right)^2}+3\sqrt[3]{8x+11}+9}-\frac{1}{3+\sqrt{x+7}}}{x-1}=\frac{8}{27}-\frac{1}{6}=\frac{7}{54}\)

\(g=\lim\limits_{x\rightarrow1}\frac{\sqrt[3]{3x-2}-1+1-\sqrt{2x-1}}{\left(x-1\right)\left(x^2+x+1\right)}=\lim\limits_{x\rightarrow1}\frac{\frac{3\left(x-1\right)}{\sqrt[3]{\left(3x-2\right)^2}+\sqrt[3]{3x-2}+1}-\frac{2\left(x-1\right)}{1+\sqrt{2x-1}}}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\lim\limits_{x\rightarrow1}\frac{\frac{3}{\sqrt[3]{\left(3x-2\right)^2}+\sqrt[3]{3x-2}+1}-\frac{2}{1+\sqrt{2x-1}}}{x^2+x+1}=0\)

\(h=\lim\limits_{x\rightarrow1}\frac{\sqrt[3]{x+9}+\sqrt[3]{2x-6}}{x^3+1}=\frac{\sqrt[3]{10}-\sqrt[3]{4}}{2}\)

27 tháng 4 2017

\(\left(x-1\right)\sqrt{\dfrac{2x+3}{x^2-1}}=\sqrt{\dfrac{\left(x-1\right)\left(2x+3\right)}{x+1}}=\sqrt{2x-2+\dfrac{x-1}{x+1}}\)

Ta có:

\(\lim\limits_{x\rightarrow1^+}\left(x-1\right)\sqrt{\dfrac{2x+3}{x^2-1}}=\lim\limits_{x\rightarrow1^+}\sqrt{2x-2+\dfrac{x-1}{x+1}}=\sqrt{2-2+\dfrac{1-1}{1+1}}=0\)

2x-2 > 0 với mọi x>1

\(\dfrac{x-1}{x+1}\)>0 với mọi x>1

=>\(\lim\limits_{x\rightarrow1^+}\left(x-1\right)\sqrt{\dfrac{2x+3}{x^2-1}}=+\infty\)

29 tháng 4 2017

Đưa x-1 vào bên trong kiểu gì thế ạ, hay là bước biến đổi thứ hai như thế nào vậy, không hiểu?

NV
15 tháng 2 2020

a/ Do \(x\rightarrow-3^+\) nên \(x>-3\Rightarrow x+3>0\Rightarrow\left|x+3\right|=x+3\)

\(\Rightarrow\lim\limits_{x\rightarrow-3^+}\frac{3x+9}{\left|x+3\right|}=\lim\limits_{x\rightarrow-3^+}\frac{3\left(x+3\right)}{x+3}=3\)

b/ \(=\lim\limits_{x\rightarrow0^+}\frac{\sqrt{x}\left(1-3\sqrt{x}\right)}{\sqrt{x}\left(4\sqrt{x}-2\right)}=\lim\limits_{x\rightarrow0^+}\frac{1-3\sqrt{x}}{4\sqrt{x}-2}=-\frac{1}{2}\)

Ở câu này \(x\rightarrow0^+\) có nghĩa \(x>0\), nó chỉ để căn thức xác định, ngoài ra ko có gì đặc biệt hết

c/ Tương tự câu c, cũng chỉ để căn thức xác định \(\left(x< 1\right)\)

\(\lim\limits_{x\rightarrow1^-}\frac{\sqrt{1-x}}{\left(1-x\right)\left(x+4\right)}=\lim\limits_{x\rightarrow1^-}\frac{1}{\sqrt{1-x}\left(x+4\right)}=+\infty\)

d/ Chắc bạn ghi nhầm đề, đây ko phải giới hạn dạng vô định (vì tử khác 0, mẫu bằng 0):

\(x\rightarrow\sqrt{2}^-\Rightarrow x< \sqrt{2}\Rightarrow x^4-4< 0\)

\(\Rightarrow\lim\limits_{x\rightarrow\sqrt{2}^-}\frac{\left|x-2\right|}{x^4-4}=-\infty\)