K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2018

Đáp án D.

- Ta phân tích như sau:

   Đề thi Học kì 2 Toán 11 có đáp án (Đề 3)

7 tháng 3 2019

16 tháng 4 2018

Chọn D.

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 3)

- Ta phân tích như sau:

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 3)

18 tháng 2 2018

+Do M, N lần lượt là trung điểm của AB và BC nên MN là đường trung bình của tam giác ABC 

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Ta có: \(M\) là trung điểm của \(AC\)

\(Q\) là trung điểm của \(BC\)

\( \Rightarrow MQ\) là đường trung bình của tam giác \(ABC\)

\(\left. \begin{array}{l} \Rightarrow MQ\parallel AB\\AB \subset \left( {ABA'} \right)\end{array} \right\} \Rightarrow MQ\parallel \left( {ABA'} \right)\)

\(M\) là trung điểm của \(AC\)

\(P\) là trung điểm của \(A'C'\)

\( \Rightarrow MP\) là đường trung bình của hình bình hành \(ACC'A'\)

\(\left. \begin{array}{l} \Rightarrow MP\parallel AA'\\AA' \subset \left( {ABA'} \right)\end{array} \right\} \Rightarrow MP\parallel \left( {ABA'} \right)\)

\(\left. \begin{array}{l}MQ\parallel \left( {ABA'} \right)\\MP\parallel \left( {ABA'} \right)\\MP,MQ \subset \left( {MPQ} \right)\end{array} \right\} \Rightarrow \left( {MPQ} \right)\parallel \left( {ABA'} \right)\)

Chọn D.

2 tháng 8 2017

Chọn D

Gọi H là trung điểm của BC suy ra MH//AC

Ta có 

15 tháng 11 2023

loading...

loading...

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023


a) Ta có \(\left( {MNP} \right) \cap \left( {ABC} \right) = MN,\left( {ABC} \right) \cap \left( {ACC'A'} \right) = AC,AC//MN\) (do MN là đường trung bình của tam giác ABC) suy ra giao tuyến của (MNP) và (ACC'A') song song với MN và AC.

Qua P kẻ đường thẳng song song với AC cắt CC' tại H.

PH là giao tuyến của (MNP) và (ACC'A').

Nối H với N cắt B'C tại K.

Vậy K là giao điểm của (MNP) và B'C.

b) Gọi giao điểm BC' và B'C là O.

Ta có ACC'A' là hình bình hành P là trung điểm AA', PH //AC suy ra H là trung điểm CC'.

Xét tam giác CC'B ta có: HN là đường trung bình suy ra CK = OK.

Mà OC = OB' suy ra \(\frac{{KB'}}{{KC}} = 3\).