K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2018

\(\frac{k}{x}=\frac{a}{c}\Rightarrow ax=kc\)

\(\frac{k}{y}=\frac{b}{d}\Rightarrow by=kd\)

Vậy ax + by = kc + kd = k . ( c + d ) = k2

\(\frac{k}{x}=\frac{a}{c}\Rightarrow kc=ax;\frac{k}{y}=\frac{b}{d}\Rightarrow kd=by\)

ax+by=kc+kd=k(c+d)=k.k=k2

=>đpcm

3 tháng 7 2016

\(\frac{k}{x}=\frac{a}{c}\Rightarrow ax=ck\)

\(\frac{k}{y}=\frac{b}{d}\Rightarrow by=dk\)

Suy ra: ax+by=ck+dk=k.(c+d)

Mà c+d =k nên: ax+by=k.k=k2

12 tháng 12 2017

Ta có :

\(\frac{k}{x}=\frac{a}{c}\)\(\Rightarrow kc=ax\)

\(\frac{k}{y}=\frac{b}{d}\)\(\Rightarrow kd=by\)

\(\Rightarrow\)ax + by = kc + kd = k . ( c + d ) = k2

Vậy ...

19 tháng 1 2018

Bài rất dễ nha bạn!

\(\frac{k}{x}\) = \(\frac{a}{c}\) => kc = ax (nhân chéo)

\(\frac{k}{y}\) = \(\frac{b}{d}\)=> kd = by (nhân chéo)

=> ax+by = kc+kd(cộng từng vế phương trình)

<=> ax+by = k(c+d) [đặt nhân tử chung]

<=> ax+by = k(k) = k2 (vì c+d =k)

!!!! chúc bạn học tốt-Thợ săn toán học

19 tháng 1 2018

Ta có: \(\frac{k}{x}=\frac{a}{c}\Rightarrow kc=ax\)

\(\frac{k}{y}=\frac{b}{d}\Rightarrow kd=by\)

\(\Rightarrow ax+by=kc+kd=k\left(c+d\right)=k.k=k^2\)

31 tháng 5 2015

ta có :       

\(\frac{k}{x}=\frac{a}{c}=ax=kc\)         ;      \(\frac{k}{y}=\frac{b}{d}=>kd=by\)          (1)

c + d = k (2)

từ 1 và 2 , ta có

ax+ by = kc+ kd = k(c+d) = kk= \(k^2\)

vậy ax+by = \(k^2\) (đpcm)

 

4 tháng 10 2019

a,b,c khác 0 nhé

4 tháng 10 2019

Ba số x,y,z tỉ lệ với ba số a,b,c

\(\Rightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}\)(1)

Lại có: \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{xa}{a^2}+\frac{yb}{b^2}+\frac{zc}{c^2}=\frac{xa+yb+zc}{a^2+b^2+c^2}=\frac{9\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}=9\) (2)

Từ (1) và (2) ta có : \(\frac{x+y+z}{a+b+c}=9\)

\(\Rightarrow\left(x+y+z\right)=9\left(a+b+c\right)\) (đpcm)

21 tháng 5 2018

với mọi giá trị của x thì ax2 + bx + c = 0
nên ta có thể lấy giá trị của x bất kỳ
với x = 0 => ax2 + bx + c = 0 <=> c = 0 => ax2 + bx = 0
với x = 1 => ax2 + bx = 0 <=> a + b = 0 (1)
với x = -1 => ax2 + bx = 0 <=> a-b = 0 (2)
từ (1) và (2) => 2a = 0 => a = 0
=> b = 0
vậy a = b = c = 0

21 tháng 5 2018

f(x) = 0 với mọi giá trị của x, ta chọn:
x = 0 => ax2+bx+c = c = 0
x = 1 => a+b +c = 0
x = -1 => a - b + c = 0
=> 2b = 0 => b = 0
=> a = b = c = 0
------------
phương trình đa thức bậc n có nhiều hơn n nghiệm <=> các hệ số bằng nhau và = 0