K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2021

Trình bày chi tiết giúp mình với ạ

 

a, Khi \(m=-1\)ta có HPT : \(\hept{\begin{cases}-x+y=-2\\x-y=0\end{cases}}\)

=> HPT vô nghiệm

b, \(\hept{\begin{cases}mx+y=2m\\x+my=m+1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=2m-mx\\x+m\left(2m-mx\right)=m+1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=2m-mx\\\left(1-m^2\right)x=-2m^2+m+1\end{cases}}\)( * )

HPT vô nghiệm

<=> ( * ) vô nghiệm

\(\Leftrightarrow\hept{\begin{cases}1-m^2=0\\-2m^2+m+1\end{cases}}\ne0\)

<=> m = 1 hoặc m = -1 mà m khác 1 và -1/2 

<=> m = -1

AH
Akai Haruma
Giáo viên
14 tháng 8 2019

Lời giải:

a) Khi $m=1$ thì HPT trở thành:

\(\left\{\begin{matrix} x-y=2\\ x-4y=-1\end{matrix}\right.\Rightarrow (x-y)-(x-4y)=2-(-1)\)

\(\Leftrightarrow 3y=3\Rightarrow y=1\)

\(\Rightarrow x=2+y=3\)

Vậy HPT có nghiệm $(x,y)=(3,1)$

b)

\(\left\{\begin{matrix} x-my=2\\ mx-4y=m-2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=my+2\\ mx-4y=m-2\end{matrix}\right.\)

\(\Rightarrow m(my+2)-4y=m-2\)

\(\Leftrightarrow y(m^2-4)=-(m+2)(*)\)

Để HPT ban đầu có nghiệm $(x,y)$ duy nhất thfi $(*)$ cũng phải có nghiệm $y$ duy nhất. Điều này xảy ra khi mà \(m^2-4\neq 0\Leftrightarrow (m-2)(m+2)\neq 0\Leftrightarrow m\ne \pm 2\)

Khi đó: \(y=\frac{-(m+2)}{m^2-4}=\frac{1}{2-m}\)

Để \(y>0\Leftrightarrow \frac{1}{2-m}>0\Leftrightarrow 2-m>0\Leftrightarrow m< 2\)

Vậy $m< 2$ và $m\neq -2$

AH
Akai Haruma
Giáo viên
12 tháng 8 2019

Lời giải:

a) Khi $m=1$ thì HPT trở thành:

\(\left\{\begin{matrix} x-y=2\\ x-4y=-1\end{matrix}\right.\Rightarrow (x-y)-(x-4y)=2-(-1)\)

\(\Leftrightarrow 3y=3\Rightarrow y=1\)

\(\Rightarrow x=2+y=3\)

Vậy HPT có nghiệm $(x,y)=(3,1)$

b)

\(\left\{\begin{matrix} x-my=2\\ mx-4y=m-2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=my+2\\ mx-4y=m-2\end{matrix}\right.\)

\(\Rightarrow m(my+2)-4y=m-2\)

\(\Leftrightarrow y(m^2-4)=-(m+2)(*)\)

Để HPT ban đầu có nghiệm $(x,y)$ duy nhất thfi $(*)$ cũng phải có nghiệm $y$ duy nhất. Điều này xảy ra khi mà \(m^2-4\neq 0\Leftrightarrow (m-2)(m+2)\neq 0\Leftrightarrow m\ne \pm 2\)

Khi đó: \(y=\frac{-(m+2)}{m^2-4}=\frac{1}{2-m}\)

Để \(y>0\Leftrightarrow \frac{1}{2-m}>0\Leftrightarrow 2-m>0\Leftrightarrow m< 2\)

Vậy $m< 2$ và $m\neq -2$

22 tháng 1 2022

a/ Xét pt : \(\left\{{}\begin{matrix}mx-y=1\\\dfrac{x}{2}-\dfrac{y}{2}=335\end{matrix}\right.\)

 Khi \(m=2\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-y=1\\x-y=670\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-669\\y=-1339\end{matrix}\right.\)

b/ \(\left\{{}\begin{matrix}mx-y=1\\x-y=670\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=x-670\\mx-\left(x-670\right)=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=x-670\\x\left(m-1\right)=-669\end{matrix}\right.\)

Để pt có nghiệm duy nhất \(\Leftrightarrow m\ne1\)

Vậy...

a) Thay m=2 vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}x+2y=3\\2x+y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+4y=6\\2x+y=5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3x=1\\x+2y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}\\2y=3-x=3-\dfrac{1}{3}=\dfrac{8}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}\\y=\dfrac{4}{3}\end{matrix}\right.\)

Vậy: Khi m=2 thì hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=\dfrac{1}{3}\\y=\dfrac{4}{3}\end{matrix}\right.\)