K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2018

a/thay m= 1 ta có hpt:

\(\left\{{}\begin{matrix}x+y=3\\4x+y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

b/ \(\left\{{}\begin{matrix}mx+y=3\\4x+my=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2x-4x=3m-6\\4x+my=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\left(m^2-4\right)=3\left(m-2\right)\\4x+my=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\left(m+2\right)=3\\4x+my=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{m+2}\\y=\dfrac{\left(6-4\cdot\dfrac{3}{m+2}\right)}{m}\end{matrix}\right.\)

x, y nguyên dương => \(\left\{{}\begin{matrix}\dfrac{3}{m+2}>0\Leftrightarrow m>-2\\\dfrac{\left(6-\dfrac{12}{m+2}\right)}{m}>0\Leftrightarrow-2< m< 0\cup m>0\end{matrix}\right.\)

\(\Leftrightarrow m>-2;m#0\)

a, Khi \(m=-1\)ta có HPT : \(\hept{\begin{cases}-x+y=-2\\x-y=0\end{cases}}\)

=> HPT vô nghiệm

b, \(\hept{\begin{cases}mx+y=2m\\x+my=m+1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=2m-mx\\x+m\left(2m-mx\right)=m+1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=2m-mx\\\left(1-m^2\right)x=-2m^2+m+1\end{cases}}\)( * )

HPT vô nghiệm

<=> ( * ) vô nghiệm

\(\Leftrightarrow\hept{\begin{cases}1-m^2=0\\-2m^2+m+1\end{cases}}\ne0\)

<=> m = 1 hoặc m = -1 mà m khác 1 và -1/2 

<=> m = -1

a) Thay m=2 vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}x+2y=3\\2x+y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+4y=6\\2x+y=5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3x=1\\x+2y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}\\2y=3-x=3-\dfrac{1}{3}=\dfrac{8}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}\\y=\dfrac{4}{3}\end{matrix}\right.\)

Vậy: Khi m=2 thì hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=\dfrac{1}{3}\\y=\dfrac{4}{3}\end{matrix}\right.\)