K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2020

\(\left\{{}\begin{matrix}\left(m+1\right)x-y=3\\mx+y=m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(2m+1\right)x=m+3\\mx+y=m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{m+3}{2m+1}\\\frac{m\left(m+3\right)}{2m+1}+y=m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{m+3}{2m+1}\\y=\frac{m^2-2m}{2m+1}\end{matrix}\right.\)

a) Thay \(m=\sqrt{2}\) ta có :

\(\left\{{}\begin{matrix}x=\frac{\sqrt{2}+3}{2\sqrt{2}+1}\\y=\frac{2-2\sqrt{2}}{2\sqrt{2}+1}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1+5\sqrt{2}}{7}\\y=\frac{6\sqrt{2}-10}{7}\end{matrix}\right.\)

b) Để x + y > 0 thì :

\(\frac{m+3}{2m+1}+\frac{m^2-2m}{2m+1}>0\Leftrightarrow\frac{m^2-m+3}{2m+1}>0\)

Lại có :

\(m^2-m+3=m^2-m+\frac{1}{4}+\frac{11}{4}=\left(m-\frac{1}{2}\right)^2+\frac{11}{4}>0\)

\(\Rightarrow2m+1>0\Leftrightarrow m>-\frac{1}{2}\)

Thay x = y = a vào hệ , ta có :

\(a=\frac{m+3}{2m+1}=\frac{m^2-2m}{2m+1}\Rightarrow m+3=m^2-2m\)

\(\Leftrightarrow m^2-3m-3=0\left(1\right)\)

Δ = 9 + 4.3.1 = 21 > 0

Vậy pt có 2 nghiệm phân biệt :

\(m_1=\frac{3+\sqrt{21}}{2}\left(tm\right);m_2=\frac{3-\sqrt{21}}{2}\left(tm\right)\)

Để hệ có nghiệm duy nhất thỏa mãn x + y > 0 thì m = ...

8 tháng 3 2020

\(\hept{\begin{cases}mx+y=4\\x-my=1\end{cases}\Rightarrow\hept{\begin{cases}m+m^2y+y=4\\x=1+my\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}x=1+my\\y\left(m+1\right)=4-m\end{cases}\Rightarrow\hept{\begin{cases}y=\frac{4-m}{m^2+1}\\x=\frac{m^2+1+4m-m^2}{m^2+1}=\frac{4m+1}{m^2+1}\end{cases}}}\)

\(\Rightarrow x+y=\frac{8}{m^2+1}\Leftrightarrow\frac{4-m+4m+1}{m^2+1}=\frac{8}{m^2+1}\)

<=> 5+3m=8 <=> m=1

\(\Rightarrow\hept{\begin{cases}x=\frac{4+1}{1+1}=\frac{5}{2}\\y=\frac{4-1}{2}=\frac{3}{2}\end{cases}}\)

22 tháng 1 2022

a/ Xét pt : \(\left\{{}\begin{matrix}mx-y=1\\\dfrac{x}{2}-\dfrac{y}{2}=335\end{matrix}\right.\)

 Khi \(m=2\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-y=1\\x-y=670\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-669\\y=-1339\end{matrix}\right.\)

b/ \(\left\{{}\begin{matrix}mx-y=1\\x-y=670\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=x-670\\mx-\left(x-670\right)=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=x-670\\x\left(m-1\right)=-669\end{matrix}\right.\)

Để pt có nghiệm duy nhất \(\Leftrightarrow m\ne1\)

Vậy...

8 tháng 3 2020

1) Cho hệ phương trình:

{mx+y=52x−y=−2(I){mx+y=52x−y=−2(I)

a) Với m=1 ta có hệ phương trình:

{x+y=52x−y=−2{x+y=52x−y=−2

Cộng vế với vế ta được:

3x=3⇔x=1⇒y=2x+2=43x=3⇔x=1⇒y=2x+2=4

Vậy với  m=11m=11 thì hệ phương trình (I) có nghiệm x=1 và y=4

b) Nghiệm (x0,y0)(x0,y0) của  (I) thỏa mãn x0+y0=1x0+y0=1

nên ta có hệ phương trình:

⎧⎪⎨⎪⎩x+y=1(1)mx+y=5(2)2x−y=−2(3){x+y=1(1)mx+y=5(2)2x−y=−2(3)

Lấy (1) + (3) ta được: 3x=−1⇒x=−13⇒y=1−x=433x=−1⇒x=−13⇒y=1−x=43

Thay vào (2) suy ra m=5−yx=−11m=5−yx=−11

Vậy với m=−11m=−11 thì nghiệm của hệ phương trình (I) có tổng là 1.

2) Từ x+my=2⇒x=2−myx+my=2⇒x=2−my

Thay vào phương trình mx−2y=1mx−2y=1 ta được:

m(2−my)−2y=1⇒y=2m−1m2+2m(2−my)−2y=1⇒y=2m−1m2+2

⇒x=2−m2m−1m2+2⇒x=2−m2m−1m2+2

x=m+4m2+2x=m+4m2+2

Do m2+2>0m2+2>0 ∀m∀m

⇒x>0⇒m+4>0⇒m>−4⇒x>0⇒m+4>0⇒m>−4 và y<0⇒2m−1<0⇒m<12y<0⇒2m−1<0⇒m<12

Vậy với −4<m<12−4<m<12 thì phương trình có nghiệm duy nhất mà x>0,y<0

a, Khi \(m=-1\)ta có HPT : \(\hept{\begin{cases}-x+y=-2\\x-y=0\end{cases}}\)

=> HPT vô nghiệm

b, \(\hept{\begin{cases}mx+y=2m\\x+my=m+1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=2m-mx\\x+m\left(2m-mx\right)=m+1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=2m-mx\\\left(1-m^2\right)x=-2m^2+m+1\end{cases}}\)( * )

HPT vô nghiệm

<=> ( * ) vô nghiệm

\(\Leftrightarrow\hept{\begin{cases}1-m^2=0\\-2m^2+m+1\end{cases}}\ne0\)

<=> m = 1 hoặc m = -1 mà m khác 1 và -1/2 

<=> m = -1