Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) \(\hept{\begin{cases}x+my=m+1\left(1\right)\\mx+y=2m\left(2\right)\end{cases}}\)
từ \(\left(2\right)\) ta có: \(y=2m-mx\) \(\left(3\right)\)
thay (3) vào (1) ta được \(x+m\left(2m-mx\right)=m+1\)
\(\Leftrightarrow x+2m^2-m^2x=m+1\)
\(\Leftrightarrow x\left(1-m^2\right)=m+1-2m^2\)
\(\Leftrightarrow x\left(1-m^2\right)=-m^2+1\)
\(\Leftrightarrow x\left(m^2-1\right)=m^2-1\) \(\left(4\right)\)
để hpt có nghiệm duy nhất, pt (4) pải có nghiệm duy nhất
\(\Leftrightarrow m^2-1\ne0\Leftrightarrow m^2\ne1\Leftrightarrow m\ne\pm1\)
từ (4) ta có \(x=\frac{m^2-1}{m^2-1}=1\)
từ (3) ta có: \(y=2m-m\)
\(y=m\)
vậy hpt có nghiệm duy nhất \(\left(x;y\right)=\left(1;m\right)\)
theo bài ra \(\hept{\begin{cases}x\ge2\\y\ge1\end{cases}}\)
\(\Leftrightarrow m\ge1\)
vậy....
a) khi m = 2 hpt có dạng
\(\hept{\begin{cases}x+2y=3\\2x+y=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3-2y\\2\left(3-2y\right)+y=4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=3-2y\\6-4y+y=4\end{cases}}\Leftrightarrow\hept{\begin{cases}-3y=-2\\x=3-2y\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=\frac{2}{3}\\x=\frac{5}{3}\end{cases}}\)
vậy....
Hệ \(\hept{\begin{cases}y^2=x^3-4x^2+ax\\x^2=y^3-4y^2+ay\end{cases}}\)
Trừ vế theo vế của 2 pt trên ta đc
\(\left(x-y\right)\left(x^2+y^2+xy-3x-3y+a\right)=0\)(chỗ này mk làm hơi tắt , bn cố hiểu nhé ^^ )
*Nếu x=y thay vào phương trình đầu ta có
\(x^3-5x^2+ax=0\)
\(\Leftrightarrow x\left(x^2-5x+a\right)=0\)
Ta có
\(\hept{\begin{cases}x+y=3m-2\\x-2y=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=3m-2\\3y=3m\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y=3m-2\\y=m\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2m-2\\y=m\end{cases}}\)
Vậy hpt có nghiệm \(\hept{\begin{cases}x=2m-2\\y=m\end{cases}}\) ( 1 )
Thay ( 1 ) vào x2 - 2y + 2 = 0 ta được
\(\left(2m-2\right)^2-2m+2=0\)
\(\Leftrightarrow\left(2m-2\right)\left(2m-2\right)-\left(2m-2\right)=0\)
\(\Leftrightarrow\left(2m-2\right)\left(2m-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2m-2=0\\2m-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}m=1\\m=\frac{3}{2}\end{cases}}\)
Vậy ..................................
b) hệ phương trình có nghiệm thỏa mãn 3x-7y=19
=> x,y là nghiệm của hệ phương trình \(\hept{\begin{cases}x-3y=5\left(1\right)\\3x-7y=19\left(2\right)\end{cases}}\)
\(\left(1\right)\Leftrightarrow3x-9y=15\Leftrightarrow3x=15+9y\)
thay 3x=15+9y zô (4) ta đc
\(15+9y-7y=19\)
=>\(2y=4=>y=2\)
\(=>x-3.2=5=>x=11\)
thay x=11 , y=6 ta có
\(4.11+2=13.m-32\)
=> m=6
b)\(\hept{\begin{cases}x-3y=5\left(3\right)\\4x+y=13m-32\left(4\right)\end{cases}}\)
\(\left(3\right)\Leftrightarrow4x-12y=20\Leftrightarrow4x=20+12y\)
thay zô (4) , rồi làm biến đổi như câu a) nhá
xong => y=m-4
=> x=5+3y
=> x=5+3(m-4)=3m-7
\(\hept{\begin{cases}x>2\\y< 3\end{cases}\Leftrightarrow\hept{\begin{cases}3m-7>2\\m-4< 3\end{cases}\Leftrightarrow}\hept{\begin{cases}m>3\\m< 7\end{cases}\Leftrightarrow}3< m< 7}\)
c) Thay x=3m-7 ; y=m-4 ta có
\(S=\left(3m-7\right)^2+6\left(m-4\right)+2030\)
\(=9m^2-42m+49+6m-24+2030\)
\(=9m^2-36m+2055=9m^2-2.3m.6+36+2019\)
\(=\left(3m-6\right)^2+2019\ge2019\forall m\)
dấu = xảy ra khi 3m-6=0 => m=2
zậy ...
\(\hept{\begin{cases}ax+y=b\left(1\right)\\x^2-4y^2=1\left(2\right)\end{cases}}\)
Từ (1) <=> y = b - ax Thế vào (2) ta có phương trình:
\(x^2-4\left(b-ax\right)^2=1\)
<=> \(4a^2x^2-8abx+4b^2+1-x^2=0\)
<=> \(\left(4a^2-1\right)x^2-8abx+4b^2+1=0\)(3)
+) TH1: \(4a^2-1=0\Leftrightarrow\orbr{\begin{cases}a=\frac{1}{2}\\a=-\frac{1}{2}\end{cases}}\)
phương trình trên có nghiệm <=> b \(\ne\)0
=> a = 1/2 loại
phương trình trên có nghiệm <=> b \(\ne\)0
=> a = -1/2 loại
+) TH2: \(4a^2-1\ne0\Leftrightarrow\hept{\begin{cases}a\ne\frac{1}{2}\\a\ne-\frac{1}{2}\end{cases}}\)
pt (3) có nghiệm <=> \(\Delta'\ge0\)<=> \(\left(4ab\right)^2-\left(4a^2-1\right)\left(4b^2+1\right)\ge0\)
<=> \(-4a^2+4b^2+1\ge0\)
<=> \(4b^2+1\ge4a^2\)(4)
mà \(4b^2+1\ge1\) với mọi b
Hệ có nghiệm với mọi b <=> pt (3) có nghiệm với mọi b <=> (4) đúng với mọi b
<=> \(4a^2\le1\Leftrightarrow-\frac{1}{2}\le a\le\frac{1}{2}\)
Đối chiếu đk: -1/2 < a < 1/2
Kết luận:...