Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\Delta IHB\)có IA vừa là đường cao vừa là trung tuyến nên cân tại I, nên IA đồng thời là được phân giác
\(\Rightarrow\widehat{AIB}=\widehat{AIH}\)
Mà \(\widehat{AIH}=\widehat{DIC}\)( Đối đỉnh )
\(\Rightarrow\widehat{AIB}=\widehat{DIC}\)
Vậy ...
Xét ΔAIH và ΔAIB có: \(\left\{{}\begin{matrix}AH=BH\\\widehat{HAI}=\widehat{BAI}\\AI chung\end{matrix}\right.\)
=> ΔAIH = ΔAIB(c.g.c)
=> \(\widehat{AIH}=\widehat{AIB}\) (2 góc tương ứng) (1)
Mà \(\widehat{AIH}=\widehat{CID}\) (2 góc đối đỉnh)
=> \(\widehat{AIB}=\widehat{CID}\) (2)
Từ (1) và (2) =>đpcm
Xét ΔIAB vuông tại A và ΔIAH vuông tại A có
IA chung
AB=AH(gt)
Do đó: ΔIAB=ΔIAH(Hai cạnh góc vuông)
Suy ra: \(\widehat{AIB}=\widehat{AIH}\)(hai góc tương ứng)
mà \(\widehat{AIH}=\widehat{CID}\)(hai góc đối đỉnh)
nên \(\widehat{AIB}=\widehat{CID}\)
tự kẻ hình
a, có D đx D qua DI
I đx I qua DI
E đx C qua DI (gt)
=> tam giác EID = tam giác CID (đl)
=> góc IED = góc ICD (đn) (1)
AB // DC (gt) mà ABI slt IEC
=> góc ABI = góc IEC (đl) (2)
(1)(2) => góc ABI = góc ICD (tcbc)
có AIB + góc ABI = 90 do ...
góc CID + góc ICD = 90 do ...
góc IAB = IDC (gt)
=> góc AIB = góc CID
b, F đối xứng cái gì cơ