K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
VT
15 tháng 9 2017
gọi AE giao với DC=i
dễ dàng chứng minh \(ME=NF=\frac{1}{2}AB\)
dựa vào đình lí Ta lét ta có
\(\frac{ME}{DI}=\frac{AE}{AI}=\frac{EF}{IC}\)
để ME=EF<=> DI=CI <=> I là trung điểm của DC
dễ dàng chứng minh E là trung điểm của BD
=>HI//BC=> AI//BC=> ABCI là hình binhf hành <=> AB=IC <=> AB=CD/2
26 tháng 8 2021
Xét hình thang ABCD (AB//CD) có:
AM=MD=12AD
BN=NC=12BC
⇒MN⇒MN là đường trung bình
⇒ \(\hept{\begin{cases}MN=(AB+CD)/2=3AB/2\\MN//AB//CD\end{cases}} \)
Xét △ABD có:
AM=MD=12AD
AP//AB
⇒AP=12AB (1)
Xét △ABC có:
BN=NC=12BC
NQ//AB
⇒NQ=12AB(2)
Ta lại có:
MP+PQ+QN=MN
⇔PQ=MN−MP−NQ
⇔PQ=3AB2−12AB−12AB
⇔PQ=12AB(3)
Từ (1)(2)(3)⇒MP=PQ=QN