Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ABC \(\perp\)tại A
Áp dụng định lí pi-ta-go ta có :
BC2 = AB2 + AC2
BC2 = 152 + 202
BC2 = 625
BC = 25
Do AD là đường phân giác \(\widehat{A}\)
=) \(\frac{B\text{D}}{C\text{D}}\)= \(\frac{AB}{AC}\)
=) \(\frac{B\text{D}}{BC-B\text{D}}\)= \(\frac{15}{20}\)
=) \(\frac{B\text{D}}{25-B\text{D}}\)= \(\frac{15}{20}\)
=) 20.BD = 15.( 25 - BD )
20.BD = 375 - 15.BD
20.BD + 15.BD = 375
35. BD = 375
BD \(\approx\)10,7
=) CD \(\approx\)24,3
Bài 1:
a.
AB // CD
=> A + D = 1800 (2 góc trong cùng phía)
=> A = 1800 - D = 1800 - 540 = 1260
AB // CD
=> B + C = 1800 (2 góc trong cùng phía)
=> B = 1800 - C = 1800 - 1050 = 750
b.
AB // CD
=> A + D = 1800 (2 góc trong cùng phía)
=> A = (1800 - 320) : 2 = 740
=> D = 1800 - 740 = 1060
AB // CD
=> B + C = 1800 (2 góc trong cùng phía)
=> B = 1800 : (1 + 2) . 2 = 1200
=> C = 1800 - 1200 = 600
Bài 2:
a: Xét ΔABE và ΔACF có
góc ABE=góc ACF
AB=AC
góc A chung
Do đó: ΔABE=ΔACF
Suy ra: AE=AF
b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC
=>BFEC là hình thang
mà CF=BE
nên BFEC là hình thang cân
c: Xét ΔFEB có góc FEB=góc FBE
nên ΔFEB cân tại F
=>FE=FB=EC
Bài 2:
a: Xét ΔABE và ΔACF có
góc ABE=góc ACF
AB=AC
góc A chung
Do đó: ΔABE=ΔACF
Suy ra: AE=AF
b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC
=>BFEC là hình thang
mà CF=BE
nên BFEC là hình thang cân
c: Xét ΔFEB có góc FEB=góc FBE
nên ΔFEB cân tại F
=>FE=FB=EC
a: \(BC=\sqrt{20^2+21^2}=29\left(cm\right)\)
b: AD là phân giác
=>BD/AB=CD/AC
=>BD/20=CD/21=29/41
=>BD=580/41cm; CD=609/41cm
c: Xet tứ giác AEDF có
AE//DF
DE//FA
góc FAE=90 độ
AD là phan giác của góc FAE
=>AEDF là hình vuông
a: Xét ΔAOD có
\(\widehat{AOD}+\widehat{DAO}+\widehat{ODA}=180^0\)
\(\Leftrightarrow\widehat{AOD}+\dfrac{180^0}{2}=180^0\)
hay \(\widehat{AOD}=90^0\)