K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2019

Gọi H là trung điểm DC. 

Chứng minh HE// IF( vì cùng //BC)

=> HE vuông FK ( vì FK vuông IF)

Tương tự HF// EI( vì cùng //AD)

=> HF vuông  EK( vì EK vuông IE)

Xét tam giác EFH có EK và FK là 2 đường cao nên K là trực tâm. Suy ra HK vuông FE mà FE //DC nên HK vuông DC tại H suy ra tam giác KDC cân tại K. Nên KD=KC

12 tháng 9 2018

Bạn xem lời giải của cô Huyền ở đường link phía dưới nhé:

Câu hỏi của Edogawa Conan - Toán lớp 8 - Học toán với OnlineMath

28 tháng 3 2020

Tham khảo link này: https://olm.vn/hoi-dap/detail/81945110314.html

13 tháng 4 2020

hình tự vẽ nhé

do PK // BD =) áp dụng định lí ta-lét vào tam giác CBD được: CP/PB = CK/KD      (1)

dễ dàng chứng minh được tứ giác ABKD là hình bình hành =) KD=AB và AD=BK

tương tự tứ giác ABCI cũng là hình bình hành =) AI =BC

có góc PKC= góc BDC (PK//BD)

góc BDA=góc BKP (cùng = DBK)

góc AID=góc BCK 

dễ dàng =) góc ADI = góc BCK  

=) góc DAI = góc KBC

=) tam giác DAI = tam giác KBC (c-g-c) =) DI=KC

vì AB//DI nên áp dụng hệ quả của định lí ta-lét đc: DI/AB=DM/MB=KC/KD    (2)

từ (1) và (2) =) BM/MD = BP/PC 

áp dụng định lí ta lét đảo =) MP//DC

chưa hiểu thì hỏi nhé

13 tháng 4 2020

kohkkij

28 tháng 8 2016

1. 

O A B D C E

+) Tứ giác ABCD kà hình thang cân => góc ADC = BCD và AD = BC

=> tam giác ODC cân tại O => OD = OC  

 mà AD = BC => OA = OB

+) tam giác ODB và OCA có: OD = OC; góc DOC chung ; OB = OA 

=> Tam giác ODB = OCA (c - g - c)

=> góc ODB = OCA mà góc ODC = OCD => góc ODC - ODB = OCD - OCA

=> góc EDC = ECD => tam giác EDC cân tại E => ED = EC (2)

Từ (1)(2) => OE là đường  trung trực của CD

=> OE vuông góc CD mà CD // AB => OE vuông góc với AB

Tam giác OAB cân tại O có OE là đường cao nên đồng thời là đường  trung trực

vậy OE là đường trung trực của AB