K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Vì A'C'//AC

nên \(\widehat{A'C';BD}=\widehat{AC;BD}=90^0\)

NV
3 tháng 5

\(\left\{{}\begin{matrix}AC||A'C'\\AC\perp BD\end{matrix}\right.\) \(\Rightarrow A'C'\perp BD\)

Góc giữa 2 đường thẳng bằng 90 độ

Chọn C

NV
17 tháng 4 2022

MN là đoạn vuông góc chung \(\Rightarrow N\) là trung điểm A'D

\(\Rightarrow\dfrac{A'N}{A'D}=\dfrac{1}{2}\)

17 tháng 4 2022

C

NV
17 tháng 4 2022

\(A'C'||AC\Rightarrow\) góc cần tìm là góc \(\widehat{CAB'}\)

Mặt khác \(AB'=AC=B'C\) (các đường chéo của hình vuông bằng nhau)

\(\Rightarrow\Delta AB'C\) đều

\(\Rightarrow\widehat{CAB'}=60^0\)

17 tháng 4 2022

D.\(90^o\)

17 tháng 4 2022

D

NV
17 tháng 4 2022

Ta có: \(CD'||A'B\)

Mà \(A'B\perp AB'\) (hai đường chéo hv)

\(\Rightarrow AB'\perp CD'\)

17 tháng 4 2022

A

17 tháng 4 2022

D

17 tháng 4 2022

D

17 tháng 4 2022

Trong hình lập phương ABCD.A'B'C'D' ta có AB' // DC'

\(\Rightarrow\widehat{\left(AB',CD'\right)}=\widehat{\left(DC',CD'\right)}=90^0\) (Do \(CDD'C'\) là hình vuông)

Đáp án C

NV
14 tháng 3 2022

a. Gọi cạnh lập phương là a

Ta có: \(AC=\sqrt{AB^2+AD^2}=a\sqrt{2}\) 

\(AH=\sqrt{AD^2+DH^2}=a\sqrt{2}\)

\(CH=\sqrt{CD^2+DH^2}=a\sqrt{2}\)

\(\Rightarrow\Delta ACH\) đều \(\Rightarrow\widehat{CAH}=60^0\)

b.

Do \(B'C||A'D\Rightarrow\) góc giữa A'B và B'C bằng góc giữa A'B và A'D

Tương tự câu a, ta có tam giác A'BD đều \(\Rightarrow\widehat{BA'D}=60^0\)

c.

Do IJ song song SB (đường trung bình), CD song song AB \(\Rightarrow\) góc giữa IJ và CD bằng góc giữa SB và AB

Tam giác SAB đều (các cạnh bằng a) \(\Rightarrow\widehat{SBA}=60^0\)

d.

\(\overrightarrow{EG}=\overrightarrow{AC}\Rightarrow\widehat{\left(\overrightarrow{AF};\overrightarrow{EG}\right)=\widehat{\left(\overrightarrow{AF};\overrightarrow{AC}\right)}=\widehat{FAC}=60^0}\) do tam giác FAC đều 

14 tháng 3 2022

Thầy ơi thầy giúp em dạng này với ạ, em sắp thi rồi ạ :'((  https://hoc24.vn/cau-hoi/a-co-bao-nhieu-gia-tri-cua-a-de-limlimits-xrightarrowinftyleftsqrtx2-ax2021-x1righta2b-tim-a-de-ham-so-fxleftbeginmatrixdfracx31x1khixne-13akhix-1end.5243579572507

NV
8 tháng 3 2022

Do \(AC||A'C'\Rightarrow\widehat{\left(A'C';B'C\right)}=\widehat{\left(AC;B'C\right)}=\widehat{ACB'}\)

\(AC=AB'=B'C=AB\sqrt{2}\Rightarrow\Delta ACB'\) đều

\(\Rightarrow\widehat{ACB'}=60^0\)