K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: BC vuông góc AB

BC vuông góc SA
=>BC vuông góc (SAB)

b: (SB;(ABCD))=(BS;BA)=góc SBA

\(\sin SBA=\dfrac{SA}{SB}=\dfrac{a\sqrt{3}}{2a}=\dfrac{\sqrt{3}}{2}\)

=>góc SBA=60 độ

27 tháng 4 2021

undefined

NV
28 tháng 3 2021

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp BC\\BC\perp AB\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\)

Kẻ \(AH\perp SB\Rightarrow AH\perp\left(SBC\right)\)

\(\Rightarrow\widehat{ACH}\) là góc giữa AC và (SBC)

\(AC=a\sqrt{2}\) ; \(\dfrac{1}{AH^2}=\dfrac{1}{SA^2}+\dfrac{1}{AB^2}=\dfrac{1}{\dfrac{6a^2}{9}}+\dfrac{1}{a^2}\Rightarrow AH=\dfrac{a\sqrt{10}}{5}\)

\(\Rightarrow sin\widehat{ACH}=\dfrac{AH}{AC}=\dfrac{\sqrt{5}}{5}\Rightarrow\widehat{ACH}\approx26^034'\)

a: BC vuông góc SA
BC vuông góc AB

=>CB vuông góc (SBA)

DC vuông góc AD

DC vuông góc SA

=>DC vuông góc (SAD)

=>(SDC) vuông góc (SAD)

b: (SC;(SAD))=(SC;SD)=góc CSD

\(SD=\sqrt{SA^2+AD^2}=2a\sqrt{7}\)

\(AC=\sqrt{\left(2a\right)^2+3a^2}=a\sqrt{7}\)

\(SC=\sqrt{SA^2+AC^2}=4a\sqrt{2}\)

\(cosCSD=\dfrac{SC^2+SD^2-DC^2}{2\cdot SC\cdot SD}=\dfrac{32a^2+28a^2-4a^2}{2\cdot2a\sqrt{7}\cdot4a\sqrt{2}}=\dfrac{\sqrt{14}}{4}\)

=>góc CSD=21 độ

(SC;(ABCD))=(CS;CA)=góc SCA

tan SCA=SA/AC=5/căn 7

=>góc SCA=62 độ