Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: Sx là giao tuyến (SAD) và (SBC) sao cho Sx // AD // BC (1)
Có : M, N là trung điểm của AB, CD
Suy ra: MN // AD // BC (2)
Từ (1)(2) suy ra: MN // Sx.
Đáp án C
Vì ABCD là hình bình hành nên AD // BC
Hai mặt phẳng (SAD) và (SBC) lần lượt chứa hai đường thẳng song song nên giao tuyến của hai mặt phẳng này là đường thẳng đi qua điểm chung S và song song với AD; BC
Chọn đáp án C
a) Tìm (SAD) ∩ (SBC)
Gọi E= AD ∩ BC. Ta có:
Do đó E ∈ (SAD) ∩ (SBC).
mà S ∈ (SAD) ∩ (SBC).
⇒ SE = (SAD) ∩ (SBC)
b) Tìm SD ∩ (AMN)
+ Tìm giao tuyến của (SAD) và (AMN) :
Trong mp (SBE), gọi F = MN ∩ SE :
F ∈ SE ⊂ (SAD) ⇒ F ∈ (SAD)
F ∈ MN ⊂ (AMN) ⇒ F ∈ (AMN)
⇒ F ∈ (SAD) ∩ (AMN)
⇒ AF = (SAD) ∩ (AMN).
+ Trong mp (SAD), gọi AF ∩ SD = P
⇒ P = SD ∩ (AMN).
c) Tìm thiết diện với mp(AMN):
(AMN) ∩ (SAB) = AM;
(AMN) ∩ (SBC) = MN;
(AMN) ∩ (SCD) = NP
(AMN) ∩ (SAD) = PA.
⇒ Thiết diện cần tìm là tứ giác AMNP.
a.
Trong mp (ABCD), kéo dài AD và BC cắt nhau tại E
\(\left\{{}\begin{matrix}E\in AD\in\left(SAD\right)\\E\in BC\in\left(SBC\right)\end{matrix}\right.\) \(\Rightarrow E\in\left(SAD\right)\cap\left(SBC\right)\)
\(\Rightarrow SE=\left(SAD\right)\cap\left(SBC\right)\)
b.
Gọi O là giao điểm AC và BD \(\Rightarrow SO=\left(SAC\right)\cap\left(SBD\right)\)
Trong mp (SBD), nối DM cắt SO tại I
\(\left\{{}\begin{matrix}I\in SO\in\left(SAC\right)\\I\in DM\end{matrix}\right.\)
\(\Rightarrow I=DM\cap\left(SAC\right)\)
c.
Gọi F là trung điểm SA \(\Rightarrow FM\) là đường trung bình tam giác SAB
\(\Rightarrow FM||AB\Rightarrow FM||CD\)
Mà \(M\in\left(MCD\right)\Rightarrow F\in\left(MCD\right)\)
\(\Rightarrow\) Tứ giác CDFM là thiết diện của (MCD) và chóp
a: Xét ΔSBD có
M,N lần lượt là trung điểm của SB,SD
=>MN là đường trung bình
=>MN//BD
BD//MN
\(MN\subset\left(AMN\right)\)
BD không thuộc mp(AMN)
Do đó: BD//(AMN)
b: Gọi O là giao điểm của AC và BD
\(O\in AC\subset\left(SAC\right)\)
\(O\in BD\subset\left(SBD\right)\)
Do đó: \(O\in\left(SAC\right)\cap\left(SBD\right)\)
mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)
nên \(\left(SAC\right)\cap\left(SBD\right)=SO\)
Chọn mp(SBD) có chứa MN
(SBD) giao (SAC)=SO(cmt)
Gọi K là giao điểm của SO với MN
=>K là giao điểm của MN với mp(SAC)
+) Qua N kẻ NP// SC .
- Ta có:
- Từ đó ta có: (MNP) là mặt phẳng qua MN và song song với SC.
- Vậy (P) ≡ (MNP).
+) Ta có: (P) ∩ (SCD) = NP.
- Ta có:
+) Trong (ABCD), gọi I = NQ ∩ AC.
- Ta có:
a) (SAD) ∩ (SBC) = SE
b) Trong (SBE): MN ∩ SE = F
Trong (SAE): AF ∩ SD = P là điểm cần tìm
c) Thiết diện là tứ giác AMNP
a) Gọi P là giao điểm của CN và AB
Ta có \(P \in CN\)suy ra \(P \in (CMN)\)
Suy ra P là giao điểm của mặt phẳng (CMN) với đường thẳng AB
Gọi E là giao điểm của MB và SB
Ta có \(E \in MP\)suy ra\(E \in (CMN)\)
Suy ra E là giao điểm của mặt phẳng (CMN) với đường thẳng SB
b) Vì M và E cùng thuộc (CMN) và (SAB) nên ME là giao tuyến của hai mặt phẳng (CMN) và (SAB)
Vì E và C cùng thuộc (CMN) và (SBC) nên EC là giao tuyến của hai mặt phẳng (CMN) và (SBC)
Do AD // BC, M thuộc (SBC) nên giao tuyến của (ADM) với (SBC) là đường thẳng qua M và song song với BC.
Đáp án B