K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 6 2021

\(V=\dfrac{1}{3}SA.S_{ABCD}\Rightarrow S_{ABCD}=\dfrac{3V}{SA}=22\sqrt{3}\)

\(\Rightarrow\dfrac{1}{2}AB.AD+\dfrac{1}{2}BC.CD=22\sqrt{3}\)

\(\Leftrightarrow5AD+3CD=44\) (1)

Mặt khác: \(\left\{{}\begin{matrix}BD^2=AB^2+AD^2=AD^2+75\\BD^2=BC^2+CD^2=CD^2+27\end{matrix}\right.\)

\(\Rightarrow AD^2+75=CD^2+27\Rightarrow AD^2+48=CD^2\) (2)

Giải hệ (1) và (2) ta được \(\left\{{}\begin{matrix}AD=4\\CD=8\end{matrix}\right.\)

Từ A kẻ \(AH\perp BD\) \(\Rightarrow BD\perp\left(SAH\right)\) \(\Rightarrow\left(SBD\right)\)  và (ABCD) đều vuông góc (SAH)

\(\Rightarrow\widehat{SHA}\) là góc giữa (SBD) và đáy

Hệ thức lượng tam giác vuông ABD:

\(\dfrac{1}{AH^2}=\dfrac{1}{AD^2}+\dfrac{1}{AB^2}=\dfrac{91}{1200}\Rightarrow AH=\dfrac{20\sqrt{273}}{91}\)

\(cot\widehat{SHA}=\dfrac{AH}{SA}=\dfrac{20\sqrt{273}}{819}\)

24 tháng 6 2021

gọi x là độ dài cạnh AD; y là độ dài cạnh CD

\(\Rightarrow S_{ABCD}=S_{BAD}+S_{BCD}=\dfrac{1}{2}.AB.AD+\dfrac{1}{2}BC.CD=\dfrac{1}{2}5\sqrt{3}x+\dfrac{1}{2}3\sqrt{3}y\)

\(\Rightarrow V_{SABCD}=\dfrac{1}{3}SA.S_{ABCD}=\dfrac{1}{3}.9.\left(\dfrac{1}{2}.5\sqrt[]{3}x+\dfrac{1}{2}3\sqrt{3}y\right)=\dfrac{3\sqrt{3}}{2}\left(5x+3y\right)=66\sqrt{3}\\ \Rightarrow5x+3y=44\)

\(AH\perp BD\left(H\in BD\right)\\ cot\left(\left(SBD\right),\left(ABCD\right)\right)=\widehat{SHA}\Rightarrow cot\widehat{SHA}=\dfrac{SA}{AH}\)

2 tháng 4 2016

S B M H A E N C D

Gọi H là hình chiếu vuông góc của S lên AB, suy ra \(SH\perp\left(ABCD\right)\)

Do đó, SH là đường cao của hình chóp S.BMDN

Ta có : \(SA^2+SB^2=a^2+3a^2=AB^2\)

Nên tam giác SAB là tam giác vuông tại S.

Suy ra : \(SM=\frac{AB}{2}=a\) Do đó tam giác SAM là tam giác đều, suy ra \(SH=\frac{a\sqrt{3}}{3}\)

Diện tích của tứ giác BMDN là \(S_{BMDN}=\frac{1}{2}S_{ABCD}=2a^2\)

Thể tích của khối chóp S.BMDN là \(V=\frac{1}{3}SH.S_{BMDN}=\frac{a^3\sqrt{3}}{3}\)

Kẻ ME song song với DN (E thuộc AD)

Suy ra : \(AE=\frac{a}{2}\) Đặt \(\alpha\) là góc giữa 2 đường thẳng SM và DN

Ta có \(\left(\widehat{SM,ME}\right)=\alpha\), theo định lý 3 đường vuông góc ta có \(SA\perp AE\)

Suy ra :

\(SE=\sqrt{SA^2+AE^2}=\frac{a\sqrt{5}}{2};ME=\sqrt{AM^2+AE^2}=\frac{a\sqrt{5}}{2}\)

Tam giác SME là tam giác cân tại E nên \(\begin{cases}\widehat{SME}=\alpha\\\cos\alpha=\frac{\frac{a}{2}}{\frac{a\sqrt{5}}{2}}=\frac{\sqrt{5}}{5}\end{cases}\)

 

 

14 tháng 4 2019

Cho mình hỏi, tam giác cân thì tại sao lại suy ra cos góc kia như thế ??

7 tháng 4 2016

A E M B C H N S

Xét tam giác ABC có : \(BC=AB.\tan60^0=2a\sqrt{3}\Rightarrow S_{\Delta ABC}=2a^2\sqrt{3}\)

\(V_{S.ABCD}=\frac{1}{3}SA.S_{\Delta ABC}=\frac{1}{3}a\sqrt{3}.2a^2\sqrt{3}=2a^3\)

- Gọi N là trung điểm cạnh SA. Do SB//(CMN) nên d(SB. CM)=d(SB,(CMN))

                                                                                                 =d(B,(CMN))

                                                                                                 =d(A,(CMN))

- Kẻ \(AE\perp MC,E\in MC\) và kẻ \(AH\perp NE,H\in NE\), ta chứng minh được \(AH\perp\left(CMN\right)\Rightarrow d\left(A,\left(CMN\right)\right)=AH\)

Tính \(AE=\frac{2S_{\Delta AMC}}{MC}\) trong đó :

                              \(S_{\Delta AMC}=\frac{1}{2}AM.AC.\sin\widehat{CAM}=\frac{1}{2}a.4a\frac{\sqrt{3}}{2}=a^2\sqrt{3};MC=a\sqrt{13}\)

                             \(\Rightarrow AE=\frac{2a\sqrt{3}}{\sqrt{13}}\)

Tính được \(AH=\frac{2a\sqrt{3}}{\sqrt{29}}\Rightarrow d\left(A,\left(CMN\right)\right)=\frac{2a\sqrt{3}}{\sqrt{29}}\Rightarrow d\left(SB,CM\right)=\frac{2a\sqrt{3}}{\sqrt{29}}\)

2 tháng 4 2016

S B C D A M N

Ta có : MN là đường trung bình của tam giác SAD

Suy ra MN song song với AD và \(MN=\frac{1}{2}AD\Rightarrow\begin{cases}MN||BC\\MN=BC\end{cases}\)\(\Rightarrow\) BCNM là hình bình hành (1)

Mặt khác 

\(\begin{cases}BC\perp AB\\BC\perp SA\end{cases}\)\(\Rightarrow BC\perp\left(SAB\right)\Rightarrow BC\perp BM\left(2\right)\)

Từ (1) và (2) ra suy ra BCNM là hình chữ nhật

Ta có :

\(S_{BCNM}=2S_{\Delta BCM}\Rightarrow V_{S.BCNM}=2V_{S.BCM}\)

\(V_{S.BCM}=V_{C.SBM}=\frac{1}{3}CB.S_{\Delta SBM}=\frac{1}{6}CB.S_{\Delta SAB}=\frac{1}{6}CB.\frac{1}{2}SA.AB=\frac{a^3}{6}\)

Vậy \(V_{S.BCNM}=\frac{a^3}{3}\)

2 tháng 4 2016

S B H C I A D

Gọi I là trung điểm của AD.

Ta có : \(IA=ID=IC=a\Rightarrow CD\perp AC\)

Mặt khác, \(CD\perp SA\) suy ra CD vuông góc với SC nên tam giác SCD là tam giác vuông tại C

Trong tam giác vuông SAB ta có :

\(\frac{SH}{SB}=\frac{SA^2}{SB^2}=\frac{SA^2}{SA^2+AB^2}=\frac{2a^2}{2a^2+a^2}=\frac{2}{3}\)

Gọi \(d_{1,};d_2\) lần lượt là khoảng cách từ B và H đến mặt phẳng (SCD) thì

\(\frac{d_2}{d_1}=\frac{SH}{SB}=\frac{2}{3}\Rightarrow d_2=\frac{2}{3}d_1\)

\(d_1=\frac{3V_{B.SCD}}{S_{SCD}}=\frac{SA.S_{BCD}}{S_{SCD}}\)

\(S_{NCD}=\frac{1}{2}AB.BC=\frac{1}{2}a^2\)

\(S_{SCD}=\frac{1}{2}SC.CD=\frac{1}{2}\sqrt{SA^2+AB^2+BC^2}.\sqrt{IC^2+ID^2}=a^2\sqrt{2}\)

Suy ra \(d_1=\frac{a}{2}\)

Vậy khoảng cách từ H đến mặt phẳng (SCD) là \(d_2=\frac{2}{3}d_1=\frac{a}{3}\)

29 tháng 3 2016

A B C S H

Gọi H là trung điểm của BC=> HA=HB=HC

Kết hợp với giả thiết

SA=SB=SC=>\(SH\perp BC,\Delta SHA=\Delta SHB=SHC\)

\(\begin{cases}SH\perp\left(ABC\right)\\\widehat{SAH}=60^0\end{cases}\)

Tam giác ABC là tam giác vuông cân tại A

\(AC=AB=a\sqrt{2}\Rightarrow BC=2a\Rightarrow AH=a\)

Tam giác SHA vuông :

\(SH=AH.\tan60^0=a\sqrt{3}\Rightarrow V_{S.ABC}=\frac{1}{3}.\frac{1}{2}AB.AC.SH=\frac{\sqrt{3}a^3}{3}\)

Gọi O; R lần lượt là tâm và bán kính của mặt cầu ngoại tiếp chóp S.ABC. Suy ra P thuộc đường thẳng SH, nên O thuộc mặt phẳng (SBC). Do đó R là bán kính đường tròn ngoại tiếp tam giác SBC. 

Xét tam giác SHA ta có : \(SA=\frac{SH}{\sin60^0}=2a\Rightarrow\Delta SBC\) là tam giác đều có độ dài cạnh bằng 2a.

Suy ra \(R=\frac{2a}{2\sin60^0}=\frac{2a\sqrt{3}}{3}\)

21 tháng 5 2016

ta có : \(\begin{cases}AB\perp SH\\AB\perp HF\end{cases}\) \(\Rightarrow AB\perp\left(SHF\right)\Rightarrow\left(SAB\right)\perp\left(SHF\right)\)theo giao tuyến SF

kẻ \(HK\perp SF\) tại K \(\Rightarrow HK\perp\left(SAB\right)\Rightarrow d_{\left(B;\left(SAB\right)\right)}=HK\)

\(HF=\frac{4a}{5}\Rightarrow HK=\frac{a\sqrt{15}}{5}\)

(SAB) chứa SB và song song CD

\(\Rightarrow d_{\left(CD;SB\right)}=d_{\left(CD;\left(SAB\right)\right)}=d_{\left(C;\left(SAB\right)\right)}=CM\)(M là hình chiếu của C lên (SAB))

có : HK//CM \(\Rightarrow\frac{CM}{HK}=\frac{CA}{AH}=5\)\(\left(AC=2a\sqrt{5};AH=\frac{2a\sqrt{5}}{5}\right)\)

\(\Rightarrow CM=5HK=a\sqrt{15}\)

Vậy : \(d_{\left(CD;SB\right)}=a\sqrt{15}\)

21 tháng 5 2016

S D C B A F H E K