Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E F O
Xét : \(\Delta OED\) VÀ \(\Delta OFB\) ta có :
\(\widehat{EOD}=\widehat{FOB}\) ( ĐỐI ĐỈNH )
OD = OB (tính chất hình bình hành)
\(\widehat{ODE}=\widehat{OBF}\) ( so le trong )
Do đó :
\(\Delta ODE=\Delta OFB\left(g.c.g\right)\)
\(\Rightarrow OE=OF\)
Vậy O là trung điểm của EF hay điểm E đối xứng với điểm F qua điểm O
Chúc bạn học tốt !!!
Vì \(\Delta ODE=\Delta OBF\left(g.c.g\right)\)
nên \(OE=OF\)
Do O là trung điểm của EF nên E và F đối xứng với nhau qua O
Do E,O, F thẳng hàng mà B, O,D cũng thẳng hàng nên E O D ^ = F O B ^
(2 góc đổi đỉnh) Þ DDOE = DBOF (g-c-g) Þ OE = OF.
Vậy E đối xứng với F qua O
* Xét ∆ OAE và ∆ OCF, ta có:
OA = OC (tính chất hình bình hành)
∠ (AOE)= ∠ (COF)(đối đỉnh)
∠ (OAE)= ∠ (OCF)(so le trong)
Do đó: ∆ OAE = ∆ OCF (g.c.g)
⇒ OE = OF (l)
* Xét ∆ OAG và ∆ OCH, ta có:
OA = OC (tính chất hình bình hành)
∠ (AOG) = ∠ (COH)(dối đỉnh)
∠ (OAG) = ∠ (OCH)(so le trong).
Do đó: ∆ OAG = ∆ OCH (g.c.g)
⇒ OG = OH (2)
Từ (1) và (2) suy ra tứ giác EGFH là hình bình hành (vì có 2 đường chéo cắt nhau tại trung điểm của mỗi đường).
giải: trong \(\Delta ADB\) có:
E là trung điểm của AB (gt)
H là trung điểm của AD (gt)
=> EH là đường trung bình của \(\Delta ADB\) (đ/n)
=> EH // BD và EH = \(\frac{1}{2}\) BD (định lý) (1)
trong \(\Delta CBD\) có:
F là trung điểm của BC (gt)
G là trung điểm của CD (gt)
=> FG là đường trung bình của \(\Delta CBD\) (đ/n)
=> FG // BD và FG = \(\frac{1}{2}BD\) (định lý) (2)
từ (1) và (2) => tứ giác EFGH là hình bình hành
ok mk nhé!!! 564756582352353645756756568768768797898898707803463464545756756
Bài giải:
Hai tam giác BOM và DON có
ˆB1B1^ = ˆD1D1^ (so le trong)
BO = DO (tính chất)
ˆO1O1^ = ˆO2O2^ (đối đỉnh)
nên ∆BOM = ∆DON (g.c.g)
Suy ra OM = ON.
O là trung điểm của MN nên M đối xứng với N qua O
A B C D O M N 1 1 2 1
+ ABCD là hình bình hành có O là giao điểm hai đường chéo
\(\Rightarrow OB=OD\)
+ ABCD là hình bình hành \(\Rightarrow AB//CD\Rightarrow\widehat{B}_1=\widehat{D}_1\) ( hai góc so le trong )
Hai tam giác BOM và DON có:
\(\widehat{B_1}=\widehat{D}_1\)
OB = OD
\(\widehat{O}_1=\widehat{O}_2\) ( hai góc đối đỉnh )
\(\Rightarrow\Delta BOM=\Delta DON\left(g.c.g\right)\)
\(\Rightarrow OM=ON\)
\(\Rightarrow\) O là trung điểm của MN
\(\Rightarrow\) M đối xứng với N qua O.
Vậy M đối xứng với N qua O
Chúc bạn học tốt !!!
A B C D M O N 1 2
+ ABCD là hình bình hành có O là giao điểm hai đường chéo
=> OB = OD.
+ ABCD là hình bình hành => AB // CD => \(\widehat{B_1}=\widehat{D_1}\)( Hai góc SLT ).
Hai tam giác : BOM và DON có :
\(\widehat{B_1}=\widehat{D_1}\)
OB = OD
\(\widehat{O_1}=\widehat{O_2}\)( 2 góc đối đỉnh )
=> ΔBOM = ΔDON (g.c.g)
=> OM = ON
=> O là trung điểm của MN
=> M đối xứng với N qua O.
Hai tam giác BOM và DON có:
Xét ∆ OED và ∆ OFB, ta có:
∠ (EOD)= ∠ (FOB)(đối đỉnh)
OD = OB (tính chất hình bình hành)
∠ (ODE)= ∠ (OBF)(so le trong)
Do đó: ∆ OED = ∆ OFB (g.c.g)
⇒ OE = OF
Vậy O là trung điểm của EF hay điểm E đối xứng với điểm F qua điểm O