K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Xét  ∆ OED và ∆ OFB, ta có:

∠ (EOD)=  ∠ (FOB)(đối đỉnh)

OD = OB (tính chất hình bình hành)

∠ (ODE)=  ∠ (OBF)(so le trong)

Do đó:  ∆ OED =  ∆ OFB (g.c.g)

⇒ OE = OF

Vậy O là trung điểm của EF hay điểm E đối xứng với điểm F qua điểm O

14 tháng 9 2019

A B C D E F O

Xét : \(\Delta OED\) VÀ \(\Delta OFB\) ta có :
\(\widehat{EOD}=\widehat{FOB}\) ( ĐỐI ĐỈNH )

OD = OB (tính chất hình bình hành)

\(\widehat{ODE}=\widehat{OBF}\) ( so le trong )

Do đó :

\(\Delta ODE=\Delta OFB\left(g.c.g\right)\)

\(\Rightarrow OE=OF\)

Vậy O là trung điểm của EF hay điểm E đối xứng với điểm F qua điểm O

Chúc bạn học tốt !!!

30 tháng 6 2017

Đối xứng tâm

\(\Delta ODE=\Delta OBF\left(g.c.g\right)\)

nên \(OE=OF\)

Do O là trung điểm của EF nên E và F đối xứng với nhau qua O

10 tháng 8 2017

Do E,O, F thẳng hàng mà B, O,D cũng thẳng hàng nên E O D ^ = F O B ^  

(2 góc đổi đỉnh) Þ DDOE = DBOF (g-c-g) Þ OE = OF.

Vậy E đối xứng với F qua O

21 tháng 10 2021

CFGH

23 tháng 8 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

* Xét ∆ OAE và  ∆ OCF, ta có:

OA = OC (tính chất hình bình hành)

∠ (AOE)=  ∠ (COF)(đối đỉnh)

∠ (OAE)=  ∠ (OCF)(so le trong)

Do đó: ∆ OAE =  ∆ OCF (g.c.g)

⇒ OE = OF (l)

* Xét  ∆ OAG và  ∆ OCH, ta có:

OA = OC (tính chất hình bình hành)

∠ (AOG) =  ∠ (COH)(dối đỉnh)

∠ (OAG) =  ∠ (OCH)(so le trong).

Do đó:  ∆ OAG =  ∆ OCH (g.c.g)

⇒ OG = OH (2)

Từ (1) và (2) suy ra tứ giác EGFH là hình bình hành (vì có 2 đường chéo cắt nhau tại trung điểm của mỗi đường).

30 tháng 6 2017

Đối xứng tâm

giải: trong \(\Delta ADB\) có:

E là trung điểm của AB (gt)

H là trung điểm của AD (gt)

=> EH là đường trung bình của \(\Delta ADB\) (đ/n)

=> EH // BD và  EH = \(\frac{1}{2}\) BD (định lý) (1)

trong \(\Delta CBD\) có:

F là trung điểm của BC (gt)

G là trung điểm của CD (gt)

=> FG là đường trung bình của \(\Delta CBD\) (đ/n)

=> FG // BD và FG = \(\frac{1}{2}BD\) (định lý) (2)

từ (1) và (2) => tứ giác EFGH là hình bình hành

ok mk nhé!!! 564756582352353645756756568768768797898898707803463464545756756

15 tháng 10 2019

retyu

21 tháng 4 2017

Bài giải:

Hai tam giác BOM và DON có

ˆB1B1^ = ˆD1D1^ (so le trong)

BO = DO (tính chất)

ˆO1O1^ = ˆO2O2^ (đối đỉnh)

nên ∆BOM = ∆DON (g.c.g)

Suy ra OM = ON.

O là trung điểm của MN nên M đối xứng với N qua O

16 tháng 9 2019

A B C D O M N 1 1 2 1

+ ABCD là hình bình hành có O là giao điểm hai đường chéo

\(\Rightarrow OB=OD\)

+ ABCD là hình bình hành  \(\Rightarrow AB//CD\Rightarrow\widehat{B}_1=\widehat{D}_1\) ( hai góc so le trong )

Hai tam giác BOM và DON có:

\(\widehat{B_1}=\widehat{D}_1\)

OB = OD 

\(\widehat{O}_1=\widehat{O}_2\) ( hai góc đối đỉnh )
\(\Rightarrow\Delta BOM=\Delta DON\left(g.c.g\right)\)

\(\Rightarrow OM=ON\)

\(\Rightarrow\)  O là trung điểm của MN

\(\Rightarrow\) M đối xứng với N qua O.

Vậy M đối xứng với N qua O

Chúc bạn học tốt !!!

1 tháng 7 2020

A B C D M O N 1 2

+ ABCD là hình bình hành có O là giao điểm hai đường chéo

=> OB = OD.

+ ABCD là hình bình hành => AB // CD => \(\widehat{B_1}=\widehat{D_1}\)( Hai góc SLT ).

Hai tam giác : BOM và DON có :

\(\widehat{B_1}=\widehat{D_1}\)

OB = OD

\(\widehat{O_1}=\widehat{O_2}\)( 2 góc đối đỉnh )

=> ΔBOM = ΔDON (g.c.g)

=> OM = ON

=> O là trung điểm của MN

=> M đối xứng với N qua O.

Hai tam giác BOM và DON có: