K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2019

Ta có: F là trung điểm của AD

=> AF = DF = \(\frac{1}{2}\)AD (1)

E là trung điểm của BC

=> BE = CE = \(\frac{1}{2}\)BC (2)

Do: 2AB = AD

=> AB = \(\frac{1}{2}\)AD (3)

Ta có: hình bình hành ABCD

=> AB = CD

=> AD = BC (4)

=> AD // BC

Từ (1), (2),(3) (4)=> AB = AF = DF =BE = CE

Xét tứ giác ABEF có:

AF = BF

AF // BE ( F, E lần lượt thuộc AD, BC; AD//BC)

=> tứ giác ABEF là hình bình hành

Xét hình bình hành ABEF có:

AB = AF

=> hình bình hành ABEF là hình thoi

=> AE ⊥ BF ( tính chất)

c, Xét tam giác ABD có:

BF là đường trung tuyến ứng vs cạnh AD

F là trung điểm của AD

=> tam giác ABD là tam giác vuông

Xét tam giác vuông ABD

=> góc BAD + góc ADB + góc DBA = 1800

=> 600 + góc ADB + 900 = 1800

=> góc ADB = 300

b, Ta có hình thoi ABEF

=> BF là tia phân giác của góc ABE

Ta có: À // BE

=> góc FAB + góc ABE = 1800 (trong cùng phía bù nhau)

=> góc ABE = 1200

Mà: BF là tia phân giác của góc ABE

=> Góc ABF = góc EBF = 600

Ta lại có: hình bình hành ABCD

=> góc A = góc C

=> Góc C = 600

Xét tứ giác DFBC có:

DF // BC ( vì AD // BC; F ∈ AD)

=> tứ giác DFBC là hình thang

Xét hình thang DFBC có:

Góc FBC = góc BCD = 600

=> hình thang DFBC là hình thang cân

d, Ta có: AB = BM ( A đối xứng vs M qua B)

Mà: AB = DC

Nên: BM = CD

Tương tự ta có: BM // CD

Xét tứ giác BMCD có:

BM = CD

BM // CD

=> tứ giác BMCD là hình bình hành

Xét hình bình hành BMCD có:

Góc DBM = 900

=> hình bình hành BMCD là hình chữ nhật

Cậu xem lại nhé

11 tháng 3 2020

A B C N M G E F I

a, xét tứ giác BICG có : 

M là trung điểm cuả BC do AM là trung tuyến (gt)

M là trung điểm của GI do I đx G qua M (gt)

=> BICG là hình bình hành (dh)

+ G là trọng tâm của tam giác ABC (gt)

=> GM = AG/2 và  GN = BG/2 (đl)

E; F lần lượt là trung điểm của  GB; GA (gt) => FG = AG/2 và GE = BG/2 (tc)

=> FG = GM và GN = GE 

=> G là trung điểm của FM và EN 

=> MNFE là hình bình hành (dh)

b, MNFE là hình bình hành (câu a)  

để MNFE là hình chữ nhật

<=> NE = FM 

có : NE = 2/3BN và FM = 2/3AM

<=> AM = BN  mà AM và BN là trung tuyến của tam giác ABC (Gt)

<=>  tam giác ABC cân tại C (đl)

c, khi BICG là hình thoi 

=> BG = CG 

BG và AG là trung tuyến => CG là trung tuyến

=> tam giác ABC cân tại A 

7 tháng 11 2015

BẠN TỰ VẼ HÌNH NHÉ MÌNH GIẢI THÔI NHA ^^
 

                      Giải
a) Xét tam giác ODE, có:
    IK là đường trung bình(I t/điểm OD và K trung điểm OE)
    =>IK // DE
    Vậy:IKED là hình thang

b) Ta có IAKO là hcn (A=AIO=AKO=90 độ)
    =>AK=IO và AK // IO. 
    Mà D,I,O thẳng hàng và DI=IO (D đxứng O qua I)
    =>AK//DI và AK=DI
    =>AKDI là hbh.
c)Ta có tam giác ABC có góc A=90 độ và Góc C=30 độ
   =>góc B=60 độ
   Và tam giác ABC vuông ở A và AM là đường trung tuyến
   => AM =1/2 BC  =>AM=BM
   =>Tam giác ABM cân ở M. Và Góc B= 60độ (cmt) 
   => Tam giác ABM đều => AB=AM=BM
   Vậy chu vi tam giác ABC= 3 x 7=21 (cm)


 

b1: cho tam giác nhọn ABC.  Gọi D,E,F lần lượt là trung điểm của AC,AB,BCa) tứ giác BCDE là hình gì? vì sao?b) tứ giác BEDF là hình gì? vì sao?c) gọi H là trực tâm của tam giác ABC. M,N,P lần lượt là trung điểm của BH,CH,AH. cmr: tứ giác DEMN là hình chữ nhậtd) gọi O là giao điểm của MD và EN. cmr 3 điểm O,P,F thẳng hàngb2: cho tam giác ABC cân tại A. đường trung tuyến AI....
Đọc tiếp

b1: cho tam giác nhọn ABC.  Gọi D,E,F lần lượt là trung điểm của AC,AB,BC
a) tứ giác BCDE là hình gì? vì sao?
b) tứ giác BEDF là hình gì? vì sao?
c) gọi H là trực tâm của tam giác ABC. M,N,P lần lượt là trung điểm của BH,CH,AH. cmr: tứ giác DEMN là hình chữ nhật
d) gọi O là giao điểm của MD và EN. cmr 3 điểm O,P,F thẳng hàng
b2: cho tam giác ABC cân tại A. đường trung tuyến AI. E là trung điểm của AC, M là điểm đối xứng với I qua E.
a) cmr tứ giác AMCI là hình chữ nhật
b) AI cắt BM tại O. cmr OE // IC
b3: cho tam giác ABC vuông tại A, có góc B bằng 60 độ, AB = 3cm, AM là trung tuyến của tam giác.
a) Tính độ dài cạnh BC và số đo góc MAC
b) trung trực của cạnh BC cắt AB tại E và cắt AC tại F. chứng minh B với E đối xứng qua AC và FC = 2FA
c) gọi I là trung điểm của đoạn FC. K là trung điểm của đoạn FE. chứng minh tứ giác AMIK là hình chữ nhật và tính diện tích hình chữ nhật AMIK. 
d) P là trung điểm của FI, Q là trung điểm của FK. cmr 3 đường thẳng AQ,BF,MP đồng quy

0