Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Theo bài ra ta có : \(\hept{\begin{cases}mx+4y=9\\x+my=8\end{cases}}\)
Thay m = 1 vào hệ phương trình trên ta có :
\(\hept{\begin{cases}x+4y=9\\x+y=8\left(2\right)\end{cases}}\)Xét hiệu 2 phương trình : \(3y=1\Leftrightarrow y=\frac{1}{3}\)
Thay vào (2) ta được : \(x+\frac{1}{3}=8\Leftrightarrow x=8-\frac{1}{3}=\frac{23}{3}\)
Vậy \(x=\frac{23}{3};y=\frac{1}{3}\)
b, Vì hệ phương trình có nghiệm ( 1 ; 3 ) nên thay x = 1 ; y = 3 vào hệ phương trình trên :
\(\hept{\begin{cases}m+12=9\\3m=8\end{cases}\Leftrightarrow}m=-3;m=\frac{8}{3}\)
Vậy \(m=-3;m=\frac{8}{3}\)
a, Vì m = 1 thay vào hệ pt, ta có pt sau
\(\hept{\begin{cases}x+4y=9\\x+y=8\end{cases}\Leftrightarrow\hept{\begin{cases}x=9-4y\left(1\right)\\9-4y+y=8\left(2\right)\end{cases}}}\)
\(\left(2\right)\Leftrightarrow3y=1\)
\(\Rightarrow y=\frac{1}{3}\)
Thay vào pt ( 1 ), ta có :
\(x=9-4.\frac{1}{3}=\frac{23}{3}\)
Vậy nghiệm ( x ; y ) pt là\(\left(\frac{23}{3};\frac{1}{3}\right)\)
b, Vì pt có nghiệm là ( 1 ; 3 ) hay x = 1 ; y = 3
Thay vào pt, ta có :\(\hept{\begin{cases}m+12=9\\1+3m=8\end{cases}\Leftrightarrow}\hept{\begin{cases}m=-3\\m=\frac{7}{3}\end{cases}}\)
Vậy ...
`a,x-3y=2`
`<=>x=3y+2` ta thế vào phương trình trên:
`2(3y+2)+my=-5`
`<=>6y+4+my=-5`
`<=>y(m+6)=-9`
HPT có nghiệm duy nhất:
`<=>m+6 ne 0<=>m ne -6`
HPT vô số nghiệm
`<=>m+6=0,-6=0` vô lý `=>x in {cancel0}`
HPT vô nghiệm
`<=>m+6=0,-6 ne 0<=>m ne -6`
b,HPT có nghiệm duy nhất
`<=>m ne -6`(câu a)
`=>y=-9/(m+6)`
`<=>x=3y+2`
`<=>x=(-27+2m+12)/(m+6)`
`<=>x=(-15+2m)/(m+6)`
`x+2y=1`
`<=>(2m-15)/(m+6)+(-18)/(m+6)=1`
`<=>(2m-33)/(m+6)=1`
`2m-33=m+6`
`<=>m=39(TM)`
Vậy `m=39` thì HPT có nghiệm duy nhất `x+2y=1`
b)Ta có: \(\left\{{}\begin{matrix}2x+my=-5\\x-3y=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2+3y\\2\left(2+3y\right)+my=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2+3y\\6y+my+4=-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3y+2\\y\left(m+6\right)=-9\end{matrix}\right.\)
Khi \(m\ne6\) thì \(y=-\dfrac{9}{m+6}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3y+2\\y=\dfrac{-9}{m+6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\cdot\dfrac{-9}{m+6}+2\\y=-\dfrac{9}{m+6}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-27}{m+6}+\dfrac{2m+12}{m+6}=\dfrac{2m-15}{m+6}\\y=\dfrac{-9}{m+6}\end{matrix}\right.\)
Để hệ phương trình có nghiệm duy nhất thỏa mãn x+2y=1 thì \(\dfrac{2m-15}{m+6}+\dfrac{-18}{m+6}=1\)
\(\Leftrightarrow2m-33=m+6\)
\(\Leftrightarrow2m-m=6+33\)
hay m=39
Vậy: Khi m=39 thì hệ phương trình có nghiệm duy nhất thỏa mãn x+2y=1
a) Thay m=1 vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}x+4y=9\\x+y=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3y=1\\x+y=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{1}{3}\\x=8-y=8-\dfrac{1}{3}=\dfrac{23}{3}\end{matrix}\right.\)
Vậy: Khi m=1 thì hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=\dfrac{23}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\)
b) Để hệ phương trình có nghiệm (1;3) thì
Thay x=1 và y=3 vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}m+12=9\\1+3m=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-3\\3m=7\end{matrix}\right.\Leftrightarrow m\notin\varnothing\)
Vậy: Không có giá trị nào của m để hệ phương trình có nghiệm (1;3)
Thay m=1 vào hpt trên ta có:
1.x+4y=9 và x+1y=8
<=> x+4y=9 và x+y=8
<=> x+4y=9 và 4x+4y=32
<=> -3x = -23 và x+y=8
<=> x = \(\dfrac{23}{3}\) và y = \(\dfrac{1}{3}\)
b) Để hệ phương trình có nghiệm (1;3)
=> x = 1; y = 3
Thay x = 1; y = 3 vào hpt trên ta có:
m1+43=9 và 1+m3=8
<=> m+12 = 9 và 1 + 3m = 8
<=> m = -3 và m = \(\dfrac{7}{3}\)
Vậy m \(\in\left\{-3;\sqrt{\dfrac{7}{3}}\right\}\) thì hệ phương trình có nghiệm (1;3)
c) mx+4y=9 và x+my=8
SD phương pháp thế
Ra pt bậc nhất 1 ẩn: 8m - m2y + 4y = 9
<=> 8m - y(m2 -4) = 9
Để hệ phương trình có nghiệm duy nhất => m2 -4 \(\ne\) 0
<=> m2 \(\ne\) 4
<=> m \(\ne\) 2 và m \(\ne\) -2
1: mx+y=2m+2 và x+my=11
Khi m=-3 thì hệ sẽ là:
-3x+y=-6+2=-4 và x-3y=11
=>-3x+y=-4 và 3x-9y=33
=>-8y=29 và 3x-y=4
=>y=-29/8 và 3x=y+4=3/8
=>x=1/8 và y=-29/8
2: Để hệ có 1 nghiệm duy nhất thì \(\dfrac{m}{1}< >\dfrac{1}{m}\)
=>m^2<>1
=>m<>1 và m<>-1
Để hệ vô số nghiệm thì \(\dfrac{m}{1}=\dfrac{1}{m}=\dfrac{2m+2}{11}\)
=>(m=1 hoặc m=-1) và (11m=2m+2)
=>\(m\in\varnothing\)
Để hệ vô nghiệm thì m/1=1/m<>(2m+2)/11
=>m=1 hoặc m=-1
Ta có định lý sau:
Hệ \(\hept{\begin{cases}a_1x+b_1y=c_1\\a_2x+b_2y=c_2\end{cases}}\)
- Có 1 nghiệm duy nhất khi \(\frac{a_1}{a_2}\ne\frac{b_1}{b_2}\)
- Có vô số nghiệm khi \(\frac{a_1}{a_2}=\frac{b_1}{b_2}=\frac{c_1}{c_2}\)
Do đó \(\hept{\begin{cases}2x+y=5\\mx-y=-7\end{cases}}\) có 1 nghiệm duy nhất \(\Leftrightarrow\) \(\frac{2}{m}\ne\frac{1}{-1}\) \(\Leftrightarrow\) \(m\ne-2\)
Hệ pt ko thể có vô số nghiệm vì \(\frac{1}{-1}\ne\frac{5}{-7}\)
a) Hệ phương trình
Có nghiệm duy nhất khi
Có vô số nghiệm khi
Do đó, hệ phương trình đã cho có nghiệm duy nhất khi
Hệ phương trình đã cho có vô số nghiệm khi ⇔ không tồn tại m thỏa mãn