K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2017

Đề kiểm tra Toán 9 | Đề thi Toán 9

Với m - 3 ≠ 0 ⇔ m ≠ 3 hệ phương trình có nghiệm:

Đề kiểm tra Toán 9 | Đề thi Toán 9

Vì nghiệm của hệ phương trình thỏa mãn x < 0; y > 0 nên ta có:

Đề kiểm tra Toán 9 | Đề thi Toán 9

Vậy với điều kiện 3 < m < 4 thì hệ phương trình có nghiệm thỏa mãn x < 0; y > 0

16 tháng 3 2020

1:
a)\(\hept{\begin{cases}nx+x=5 \\x+y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x.\left(n+1\right)=5\left(1\right)\\x+y=1\end{cases}}\)
 

5 tháng 2 2016

mấy cái này dễ mà k lm đc à ......................................nói v thui chứ t cũng k bik làm ^^

25 tháng 2 2016

a) thay m=2 ... tự thay

\(\Leftrightarrow\int^{2y+x=2\left(1\right)}_{2x-2y=1\left(2\right)}\)

=>2y+x-2=0(1)

=>-2y+2x-1=0(2)

=>-(2y-2x+1)=0(2)

=>2y-2x+1=0(2)

vẽ đồ thị hàm số ra

=>x=1;\(y=\frac{1}{2}\)hoặc 0,5

b,c ko biết nên ns thế nào ^^

5 tháng 2 2016

em mới lóp 6

13 tháng 7 2017

dễ mak ngu z

13 tháng 7 2017

k biết làm mới hỏi đó bạn :))

12 tháng 2 2018

\(\hept{\begin{cases}x+y=4\left(1\right)\\2x+3y=m\left(2\right)\end{cases}}\)

từ \(\left(1\right)\)ta có: \(x=4-y\)\(\left(3\right)\)

thay \(\left(3\right)\) vào  \(\left(2\right)\)ta được 

\(2.\left(4-y\right)+3y=m\)

\(8-2y+3y=m\)

\(8+y=m\)

\(y=m-8\) \(\left(4\right)\)

hệ phương trình có nghiệm duy nhất khi pt \(\left(4\right)\)  có nghiệm duy nhất 

ta thấy pt (4) luôn có nghiệm duy nhất với \(\forall y\in R\)

vậy \(\forall y\in R\)thì hệ pt đã cho có nghiệm  \(\left(x;y\right)=\left(4-y;m-8\right)\)

theo bài ra \(\hept{\begin{cases}x>0\\y< 0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}4-y>0\\m-8< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}y>4\\m< 8\end{cases}}\)

vậy \(m< 8\)  là tập hợp các giá trị cần tìm 

12 tháng 2 2018

Ta có :

\(\hept{\begin{cases}x+y=4\\2x+3y=m\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=4\\x+x+y+y+y=m\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y=4\\4+4+y=m\end{cases}\Leftrightarrow\hept{\begin{cases}y=4-x\\8+4-x=m\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}y=4-12+m\\x=12-m\end{cases}}\Leftrightarrow\hept{\begin{cases}y=m-8\\x=12-m\end{cases}}\)

\(\Leftrightarrow\)\(x+y=m-8+12-m=4\)

\(\Leftrightarrow\hept{\begin{cases}y=4-8\\x=12-4\end{cases}\Leftrightarrow\hept{\begin{cases}y=-4\\x=8\end{cases}}}\)

Thoả mãn \(x>0;y< 0\)

Vậy \(x=8\) và \(y=-4\)