K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2019

Đáp án C

Cách 1: Giải bằng hàm số

Đặt CM = x    (x > 0)

Dễ tính ra CD 

Từ đề bài ta có: f (x) = 

Quãng đường ngắn nhất người đó có thể đi

Giá trị nhỏ nhất của f(x) trên (0;492) 

Ta có: f’(x) = 

=> f’(x) = 0

Ta có bảng biến thiên

x

0

                                            0

492

y’

 

           +                               0                           -

 

y

 

 

 

779,8

Vậy quãng đường ngắn nhất mà người đó có thể đi là: 779,8

Cách 2: Giải bằng hình học

Gọi B’ là điểm đối xứng của B qua D

Dễ thấy AM + MB = AM + MB’

⇔ AM + MB ngắn nhất

     AM + MB’ ngắn nhất

Dễ thấy theo bất đẳng thức tam giác: AM + MB’ ≥ AB’

⇔ AM + MB’ ngắn nhất ó AM + MB’ = AB’

Dấu “=” xảy ra khi và chỉ khi A, M, B’ thẳng hàng

 

 

14 tháng 4 2016

- Vì khoảng cách giữa hai bờ sống là không đổi , cho nên \(\overrightarrow{MN}=\overrightarrow{u}\).

- Tìm A’ là ảnh của A qua phép tịnh tiến theo \(\overrightarrow{u}\). Khi đó AMNA’ là hình bình hành : A’N=AM .

- Do đó : MA+NB ngắn nhất Vì : MA+NB=A’N+NB 

3 tháng 7 2016

tính thể tích sao vậy

20 tháng 3 2017

Đáp án D

 

4 tháng 4 2017

a) Từ hệ thức suy ra d' = φ(d) = .

b) +) φ(d) = = +∞ .

Ý nghĩa: Nếu vật thật AB tiến dần về tiêu điểm F sao cho d luôn lớn hơn f thì ảnh của nó dần tới dương vô cực.

+) φ(d) = = -∞.

Ý nghĩa: Nếu vật thật AB tiến dần về tiêu điểm F sao cho d luôn nhỏ hơn f thì ảnh của nó dần tới âm vô sực.

+) φ(d) = = = f.

Ý nghĩa: Nếu vật thật AB ở xa vô cực so với thấu kính thì ảnh của nó ở ngay trên tiêu diện ảnh (mặt phẳng qua tiêu điểm ảnh F' và vuông góc với trục chính).



6 tháng 6 2017

A B C D A' B' C' D' I J
a) Có AA' // DD' và AB//DC nên \(\left(Ax,By\right)\) // \(\left(C_z,D_t\right)\).
b) Do \(\left(Ax,By\right)\) // \(\left(C_z,D_t\right)\)\(\left(\beta\right)\cap\left(AA'B'B\right)=A'B'\)\(\left(\beta\right)\cap\left(CC'D'D\right)=C'D'\) nên \(A'B'\) // \(C'D'\).
Chứng minh tương tự B'C'//D'A'.
Do đó tứ giác A'B'C'D' là hình bình hành và J là trung điểm của A'C'.
Suy ra: IJ là đường trung bình của hình thang A'C'CA nên IJ // AA'.
c) Tương tự IJ là đường trung bình của hình thang B'D'DB \(IJ=\dfrac{\left(B'B+DD'\right)}{2}\).
Theo câu b IJ là đường trung bình của hình thang A'C'CA nên \(IJ=\dfrac{\left(AA'+CC'\right)}{2}\).
Suy ra: \(BB'+DD'=AA'+CC'\) hay \(DD'=a+c-b\).