K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔMC'A và ΔMBD' có

góc MC'A=góc MBD'

góc M chung

=>ΔMC'A đồng dạng với ΔMBD'

=>MC'/MB=MA/MD'

=>MC'*MD'=MA*MB

Xét ΔMAC và ΔMDB có

góc MAC=góc MDB

góc M chung

=>ΔMAC đồng dạng với ΔMDB

=>MA/MD=MC/MB

=>MA*MB=MD*MC

=>MD*MC=MC'*MD'

=>MD/MC'=MD'/MC

=>ΔMDD' đồng dạng với ΔMC'C

=>góc MDD'=góc MC'C

=>góc D'C'C+góc D'DC=180 độ

=>CDC'D' nội tiếp

2 tháng 6 2021

xét CEFD có

∠CAB=90 (góc nội tiếp chắn BE)

∠EFB=90 (góc nội tiếp chắn BE)

⇒∠CAB+∠EFB=90 (ΔCBA ⊥B) nên ∠ECD+∠BFE=90

mặt khác ∠BFD=∠BFA=90

⇒∠ECD+∠BFE+∠BFD=180⇔∠ECD+∠DFE=90+90=180

⇒ tứ giác CEFD nội tiếp