Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hướng dẫn giải:
a) Theo tính chất của hai tiếp tuyến cắt nhau ta có IA=IB=IC=12BCIA=IB=IC=12BC.
Do đó tam giác ABC vuông tại A
⇒ˆBAC=90∘⇒BAC^=90∘.
b) Ta có ˆI1=ˆI2;ˆI3=ˆI4I^1=I^2;I^3=I^4 (tính chất hai tiếp tuyến cắt nhau).
Do đó ˆOIO′=90∘OIO′^=90∘ (hai tia phân giác của hai góc kề bù).
c) Ta có AI⊥OO′AI⊥OO′.
Xét tam giác OIO' vuông tại I, ta có:
IA2=OA⋅O′A=9⋅4=36⇒IA=6.IA2=OA⋅O′A=9⋅4=36⇒IA=6.
Do đó BC=12cm.
Nhận xét. Câu a), b) chỉ là gợi ý để làm câu c). Đối với những bài toán có hai đường tròn tiếp xúc, ta thường vẽ thêm tiếp tuyến chung tại tiếp điểm để xuất hiện yếu tố trung gian giúp cho việc tính toán hoặc chứng minh được thuận lợi.
a) Theo tính chất của hai tiếp tuyến cắt nhau ta có IA=IB=IC=12BCIA=IB=IC=12BC.
Do đó tam giác ABC vuông tại A
⇒ˆBAC=90∘⇒BAC^=90∘.
b) Ta có ˆI1=ˆI2;ˆI3=ˆI4I^1=I^2;I^3=I^4 (tính chất hai tiếp tuyến cắt nhau).
Do đó ˆOIO′=90∘OIO′^=90∘ (hai tia phân giác của hai góc kề bù).
c) Ta có AI⊥OO′AI⊥OO′.
Xét tam giác OIO' vuông tại I, ta có:
IA2=OA⋅O′A=9⋅4=36⇒IA=6.IA2=OA⋅O′A=9⋅4=36⇒IA=6.
Do đó BC=12cm.
Nhận xét. Câu a), b) chỉ là gợi ý để làm câu c). Đối với những bài toán có hai đường tròn tiếp xúc, ta thường vẽ thêm tiếp tuyến chung tại tiếp điểm để xuất hiện yếu tố trung gian giúp cho việc tính toán hoặc chứng minh được thuận lợi.