Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x = 16 (tm) => A = \(\frac{\sqrt{16}-2}{\sqrt{16}+1}=\frac{4-2}{4+1}=\frac{2}{5}\)
b) B = \(\left(\frac{1}{\sqrt{x}+5}-\frac{x+2\sqrt{x}-5}{25-x}\right):\frac{\sqrt{x}+2}{\sqrt{x}-5}\)
B = \(\frac{\sqrt{x}-5+x+2\sqrt{x}-5}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\cdot\frac{\sqrt{x}-5}{\sqrt{x}+2}\)
B = \(\frac{x+3\sqrt{x}-10}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}\)
B = \(\frac{x+5\sqrt{x}-2\sqrt{x}-10}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}\)
B = \(\frac{\left(\sqrt{x}+5\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}-2}{\sqrt{x}+2}\)
c) P = \(\frac{B}{A}=\frac{\sqrt{x}-2}{\sqrt{x}+2}:\frac{\sqrt{x}-2}{\sqrt{x}+1}=\frac{\sqrt{x}+1}{\sqrt{x}+2}\)
=> \(P\left(\sqrt{x}+2\right)\ge x+6\sqrt{x}-13\)
<=> \(\frac{\sqrt{x}+1}{\sqrt{x}+2}.\left(\sqrt{x}+2\right)-x-6\sqrt{x}+13\ge0\)
<=> \(-x-6\sqrt{x}+13+\sqrt{x}+1\ge0\)
<=> \(-x-5\sqrt{x}+14\ge0\)
<=> \(x+5\sqrt{x}-14\le0\)
<=> \(x+7\sqrt{x}-2\sqrt{x}-14\le0\)
<=> \(\left(\sqrt{x}+7\right)\left(\sqrt{x}-2\right)\le0\)
Do \(\sqrt{x}+7>0\) với mọi x => \(\sqrt{x}-2\le0\)
<=> \(\sqrt{x}\le2\) <=> \(x\le4\)
Kết hợp với Đk: x \(\ge\)0; x \(\ne\)4; x \(\ne\)25
và x thuộc Z => x = {0; 1; 2; 3}
d) M = \(3P\cdot\frac{\sqrt{x}+2}{x+\sqrt{x}+4}\) <=>M = \(3\cdot\frac{\sqrt{x}+1}{\sqrt{x}+2}\cdot\frac{\sqrt{x}+2}{x+\sqrt{x}+4}\)
M = \(\frac{3\sqrt{x}+3}{x+\sqrt{x}+4}=\frac{x+\sqrt{x}+4-x+2\sqrt{x}-1}{\left(x+\sqrt{x}+\frac{1}{4}\right)+\frac{15}{4}}=1-\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{15}{4}}\le1\)(Do \(\left(\sqrt{x}-1\right)^2\ge0\) và \(\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{15}{4}>0\))
Dấu "=" xảy ra <=> \(\sqrt{x}-1=0\) <=> \(x=1\)
Vậy MaxM = 1 khi x = 1
Trả lời:
a, \(A=\frac{\sqrt{x}}{\sqrt{x}-5}-\frac{10\sqrt{x}}{x-25}-\frac{5}{\sqrt{x}+5}\left(ĐK:x\ge0;x\ne25\right)\)
\(=\frac{\sqrt{x}}{\sqrt{x}-5}-\frac{10\sqrt{x}}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}-\frac{5}{\sqrt{x}+5}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}-\frac{10\sqrt{x}}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}-\frac{5\left(\sqrt{x}-5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+5\right)-10\sqrt{x}-5\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\)
\(=\frac{x+5\sqrt{x}-10\sqrt{x}-5\sqrt{x}+25}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\)
\(=\frac{x-10\sqrt{x}+25}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\)
\(=\frac{\left(\sqrt{x}-5\right)^2}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}=\frac{\sqrt{x}-5}{\sqrt{x}+5}\)
b, Thay x = 9 vào A, ta được:
\(A=\frac{\sqrt{9}-5}{\sqrt{9}+5}=\frac{3-5}{3+5}=\frac{-2}{8}=-\frac{1}{4}\)
c, \(A< \frac{1}{3}\Leftrightarrow\frac{\sqrt{x}-5}{\sqrt{x}+5}< \frac{1}{3}\Leftrightarrow\frac{\sqrt{x}-5}{\sqrt{x}+5}-\frac{1}{3}< 0\)
\(\Leftrightarrow\frac{3\left(\sqrt{x}-5\right)}{3\left(\sqrt{x}+5\right)}-\frac{\sqrt{x}+5}{3\left(\sqrt{x}+5\right)}< 0\)
\(\Leftrightarrow\frac{3\sqrt{x}-15-\sqrt{x}-5}{3\left(\sqrt{x}+5\right)}< 0\)
\(\Leftrightarrow\frac{2\sqrt{x}-20}{3\left(\sqrt{x}+5\right)}< 0\)
\(\Rightarrow2\sqrt{x}-20< 0\) (vì \(3\left(\sqrt{x}+5\right)>0\) )
\(\Leftrightarrow2\sqrt{x}< 20\)
\(\Leftrightarrow\sqrt{x}< 10\)
\(\Leftrightarrow x< 100\)
Vậy \(0\le x< 100\)và \(x\ne25\) là giá trị cần tìm.
Ta có: \(B=\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)+5\left(\sqrt{x}+1\right)+4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{x+2\sqrt{x}-3+5\sqrt{x}+5+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+6\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+6}{\sqrt{x}-1}\)
do đó \(P=\frac{\sqrt{x}-1}{\sqrt{x}+1}.\frac{\sqrt{x}-6}{\sqrt{x}-1}=\frac{\sqrt{x}-6}{\sqrt{x}+1}=1-\frac{7}{\sqrt{x}+1}\)
Vì \(x\ge0\Rightarrow0< \frac{7}{\sqrt{x}+1}\le7\)
Để P nguyên thì \(\frac{7}{\sqrt{x}+1}\in Z\)
do đó \(\frac{7}{\sqrt{x}+1}\in\left\{1,2,3,4,5,6,7\right\}\)
Đến đây xét từng TH là ra
rút gọn B ta có B=\(\frac{\sqrt{x}+6}{\sqrt{x}-1}\)\(\Rightarrow\)\(AB=\frac{\sqrt{x}+6}{\sqrt{x}+1}\in Z\)
=\(1+\frac{5}{\sqrt{x}+1}\)
Vì 1\(\in Z\) nên để P thuộc Z thì \(\frac{5}{\sqrt{x}+1}\in Z\)
\(\Rightarrow\left(\sqrt{x}+1\right)\inƯ\left(5\right)=\pm1;\pm5\)
Đến đây thì ez rồi
a/ ĐKXĐ : \(\left\{{}\begin{matrix}x\ge0\\x\ne25\end{matrix}\right.\)
Thay \(x=9\) vào biểu thức ta có :
\(A=\frac{\sqrt{9}+2}{\sqrt{9}-5}=\frac{3+2}{3-5}=-\frac{5}{2}\)
Vậy....
b/ Ta có :
\(B=\frac{3}{\sqrt{x}+5}+\frac{20-2\sqrt{x}}{x-25}\)
\(=\frac{3}{\sqrt{x}+5}+\frac{20-2\sqrt{x}}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\)
\(=\frac{3\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}-5\right)}+\frac{20-2\sqrt{x}}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\)
\(=\frac{3\sqrt{x}-15+20-2\sqrt{x}}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\)
\(=\frac{\sqrt{x}+5}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\)
\(=\frac{1}{\sqrt{x}-5}\)
Vậy...
c/ Ta có :
\(A=B.\left|x-4\right|\)
\(\Leftrightarrow\frac{\sqrt{x}+2}{\sqrt{x}-5}=\frac{1}{\sqrt{x}-5}\left|x-4\right|\)
\(\Leftrightarrow\sqrt{x}+2=\left|x-4\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}+2=x-4\\\sqrt{x}+2=4-x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\sqrt{x}-6=0\\x+\sqrt{x}-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)=0\\\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=9\end{matrix}\right.\)
Vậy...